Issues:
JAMCM
SRIMCS
Article
The residue at infinity and Bezout's theorem
Grzegorz Biernat
Scientific Research of the Institute of Mathematics and Computer Science |
![]() Download Full Text |
![]() Export citation |
Citation style:
@article{Biernat_2002, url = {http://amcm.pcz.pl/get.php?article=2002_1/art_04.pdf}, year = 2002, publisher = {The Publishing Office of Czestochowa University of Technology}, volume = {1}, number = {1}, pages = {25--27}, author = {Grzegorz Biernat}, title = {The residue at infinity and Bezout's theorem}, journal = {Scientific Research of the Institute of Mathematics and Computer Science} }
TY - JOUR DO - UR - http://amcm.pcz.pl/get.php?article=2002_1/art_04.pdf TI - The residue at infinity and Bezout's theorem T2 - Scientific Research of the Institute of Mathematics and Computer Science JA - Sci Res Inst Math Comput Sci AU - Biernat, Grzegorz PY - 2002 PB - The Publishing Office of Czestochowa University of Technology SP - 25 EP - 27 IS - 1 VL - 1 SN - 1731-5417 ER -
Biernat, G. (2002). The residue at infinity and Bezout's theorem. Scientific Research of the Institute of Mathematics and Computer Science, 1(1), 25-27.
Biernat, G., 2002. The residue at infinity and Bezout's theorem. Scientific Research of the Institute of Mathematics and Computer Science, 1(1), pp.25-27. Available at: http://amcm.pcz.pl/get.php?article=2002_1/art_04.pdf
[1]G. Biernat, "The residue at infinity and Bezout's theorem," Scientific Research of the Institute of Mathematics and Computer Science, vol. 1, no. 1, pp. 25-27, 2002.
Biernat, Grzegorz. "The residue at infinity and Bezout's theorem." Scientific Research of the Institute of Mathematics and Computer Science 1.1 (2002): 25-27. CrossRef. Web.
1. Biernat G. The residue at infinity and Bezout's theorem. Scientific Research of the Institute of Mathematics and Computer Science. The Publishing Office of Czestochowa University of Technology; 2002;1(1):25-27. Available from: http://amcm.pcz.pl/get.php?article=2002_1/art_04.pdf
Biernat, Grzegorz. "The residue at infinity and Bezout's theorem." Scientific Research of the Institute of Mathematics and Computer Science 1, no. 1 (2002): 25-27.
