Logo Logo

Open Access Journal

  • About Journal
  • Aims and scope
  • Editorial Board
  • For Authors
  • Special Issues
  • History
  • Contact
  • Statistics

Issues:
Search In print
JAMCM
Vol. 22, 2023
Issue 1
Vol. 21, 2022
Issue 1 Issue 2 Issue 3 Issue 4
Vol. 20, 2021
Issue 1 Issue 2 Issue 3 Issue 4
Vol. 19, 2020
Issue 1 Issue 2 Issue 3 Issue 4
Vol. 18, 2019
Issue 1 Issue 2 Issue 3 Issue 4
Vol. 17, 2018
Issue 1 Issue 2 Issue 3 Issue 4
Vol. 16, 2017
Issue 1 Issue 2 Issue 3 Issue 4
Vol. 15, 2016
Issue 1 Issue 2 Issue 3 Issue 4
Vol. 14, 2015
Issue 1 Issue 2 Issue 3 Issue 4
Vol. 13, 2014
Issue 1 Issue 2 Issue 3 Issue 4
Vol. 12, 2013
Issue 1 Issue 2 Issue 3 Issue 4
SRIMCS
Vol. 11, 2012
Issue 1 Issue 2 Issue 3 Issue 4
Vol. 10, 2011
Issue 1 Issue 2
Vol. 9, 2010
Issue 1 Issue 2
Vol. 8, 2009
Issue 1 Issue 2
Vol. 7, 2008
Issue 1 Issue 2
Vol. 6, 2007
Issue 1
Vol. 5, 2006
Issue 1
Vol. 4, 2005
Issue 1
Vol. 3, 2004
Issue 1
Vol. 2, 2003
Issue 1
Vol. 1, 2002
Issue 1
Search
e.g., heat wave
e.g., Nowak A

Results
Search results for: author = 'Maria Lupa' and title = ''

[1] Maria Lupa, Małgorzata Wróbel, Uniformly bounded Nemytskij operators acting between the Banach spaces of generalized Hölder functions, Journal of Applied Mathematics and Computational Mechanics, 16(4), 2017, pages 37-45.
[2] Maria Lupa, Solutions of some functional equations in a class of generalized Hölder functions, Journal of Applied Mathematics and Computational Mechanics, 15(4), 2016, pages 105-116.
[3] Maria Lupa, On a certain property of generalized Hölder functions, Journal of Applied Mathematics and Computational Mechanics, 14(4), 2015, pages 127-132.
[4] Maria Lupa, A special case of generalized Hölder functions, Journal of Applied Mathematics and Computational Mechanics, 13(4), 2014, pages 81-89.
[5] Małgorzata Klimek, Maria Lupa, Reflection symmetry properties of generalized fractional derivatives, Scientific Research of the Institute of Mathematics and Computer Science, 11(3), 2012, pages 71-80.
[6] Małgorzata Klimek, Maria Lupa, On reflection symmetry in fractional mechanics, Scientific Research of the Institute of Mathematics and Computer Science, 10(1), 2011, pages 109-121.
[7] Małgorzata Klimek, Maria Lupa, On differentiable solutions for one-term nonlinear fractional differential equations, Scientific Research of the Institute of Mathematics and Computer Science, 9(2), 2010, pages 103-113.
[8] Joanna Drozdek, Maria Lupa, Ewa Ładyga, Solution of 2D hyperbolic equation by means of the BEM using discretization in time, Scientific Research of the Institute of Mathematics and Computer Science, 8(1), 2009, pages 19-24.
[9] Joanna Drozdek, Maria Lupa, Ewa Ładyga, Solution of 2D hyperbolic equation by means of the BEM using discretization in time - analysis of solution exactness, Scientific Research of the Institute of Mathematics and Computer Science, 8(1), 2009, pages 25-32.
[10] Maria Lupa, Ewa Ładyga, Application of the Boundary Element Method using discretization in time for numerical solution of hyperbolic equation, Scientific Research of the Institute of Mathematics and Computer Science, 7(1), 2008, pages 83-92.
[11] Maria Lupa, Analytical solution of Cattaneo equation, Scientific Research of the Institute of Mathematics and Computer Science, 6(1), 2007, pages 127-132.
[12] Maria Lupa, Podstawy arytmetyki interwalowej, Scientific Research of the Institute of Mathematics and Computer Science, 4(1), 2005, pages 95-100.
[13] Maria Lupa, Waldemar Lupa, Preferencje edukacyjne młodzieży a oferta edukacyjna szkół, Scientific Research of the Institute of Mathematics and Computer Science, 4(1), 2005, pages 101-109.
[14] Maria Lupa, Romuald Szopa, Wioletta Wojciechowska, Sensitivity analysis of crystallization with respect internal parameters, Scientific Research of the Institute of Mathematics and Computer Science, 3(1), 2004, pages 91-98.
[15] Maria Lupa, Romuald Szopa, Wioletta Wojciechowska, Second generation solidification model. Sensitivity with respect to mould parameters, Scientific Research of the Institute of Mathematics and Computer Science, 1(1), 2002, pages 97-105.
[16] Ewa Majchrzak, Maria Lupa, Ewa Ładyga, W pełni brzegowe sformułowanie MEB dla nieustalonej dyfuzji ciepła, Scientific Research of the Institute of Mathematics and Computer Science, 1(1), 2002, pages 133-142.
Journal of Applied Mathematics and Computational Mechanics
p-ISSN: 2299-9965, e-ISSN: 2353-0588
Editorial address: Department of Mathematics, Czestochowa University of Technology, Armii Krajowej 21, 42-200 Częstochowa, Poland
E-mail: jamcm@pcz.pl