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Abstract. In this paper, the solar heating of a multi-layered spherical body with azimuthal
symmetry is considered. The mathematical model is related to the determination of the
steady state of the temperature distribution in the spherical cone consisting of concentric
spherical layers. The solar heating is composed of two parts of the heat flux: direct and
diffusion. Also, the simultaneous cooling of the cone by its outer surface (as convective
heat flow to the environment) is taken into account. The proposed system of the partial
differential equations supplemented by the adequate boundary conditions is solved in the
analytical way by using, among others, the Legendre functions of the first kind. The sample
results of temperature distribution in the cross-section of the cone with different polar
angles are also presented.
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1. Introduction

The heat transfer occurs in so many physical processes that it is difficult nowa-
days to imagine a situation in which it does not occur. The many materials that are
the subject of scientists’ research include composite materials that are widely used
in real physical and engineering systems. The temperature distribution is examined,
among others, in layered slabs, cylinders or spheres [1-7]. For example, heat transfer
in a sphere is considered in one [8], two [9] or three dimensions [10].

Heat flows are classified in different ways and steady and unsteady heat flow
are two important examples of them. Although the study of unsteady state seems to
have more applications, many scientists still study the issue of the steady state
[11, 12]. Another criterion for the classification of issues related to heat flow may be
the division related to various ways of heating the body from the outside. It seems



54 U. Siedlecka

that in recent years, problems related to the heating of the body by solar radiation
have attracted particular attention [13, 14].

The sun is our main source of energy. This energy, called solar energy, interacts
with components of the atmosphere as it travels down to the earth. Only part of the
solar radiation reaches the earth’s surface without scattering and absorption, and
this is the so-called direct radiation. However, radiation that does not come directly
from the sun moving along a straight path, but comes from all directions of the sky,
is called diffuse radiation. In summary, radiation reaching the earth’s surface con-
sists of three components: direct radiation, diffuse radiation, and radiation reflected
to the surface from surrounding surfaces. The absorption of solar energy by any
bodies leads to an increase in their own temperature.

In this paper, we present the mathematical model of the solar heating of a multi-
-layered spherical body with azimuthal symmetry. The object of the considerations
is the spherical cone consisting with concentric spherical layers. Not only the solar
heating (consists of two parts of the heat flux: direct and diffusion) but also the
cooling of the cone by its outer surface (as convective heat flow to the environ-
ment) are taken into account. An analytical solution of the problem is derived in
the form of the product of two functions, where one of them is the Legendre func-
tions of the first kind. The temperature distribution in the cross-section of the cone
for different polar angles is also presented.

2. Mathematical modelling of the problem

The starting point of our consideration is the stationary heat conduction equation
in the form

V- (M(r)VT(r.9))=0 (1)

where A is the thermal conductivity of the material, » is the radial coordinate,
¢ 1is the polar coordinate and T is the temperature. Moreover, the operator

V- (X(r)V) is defined in the spherical coordinates as follows

V- (1(r)V) :%{a—i(x(r)rz %)+Mi[sin<pi]+ S};IE:()P%} @)

sin@ O o

where 6 is the azimuthal angle coordinate. Furthermore, we assume that the
temperature distribution in the body is azimuthally invariant (azimuthal symmetry)
so we can drop the third term in the bracket in the equation. What’s more, we can

simplify the operator V-(?»(r)V) by introducing a new variable p, related to the
polar angle ¢, by the following relationship

n=cos(o) 3)
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Taking into consideration the azimuthal symmetry, the operator (2) can be written
now in the simplified form

v-(1(r)V) =%{§(K(r)r2§j+x(r);¥u[(1 —uz)%ﬂ )

We consider the stationary heat conduction in a spherical medium which con-
sists with n concentric spherical layers which are defined by the radius interval:

r <r<r (i=1..,n)and 0<@<0@,, where 0 <@, < /2. The medium is a spheri-
cal cone (Fig. 1) for 0 <@, <n/2 and a hemisphere for @,= /2.

Fig. 1. The main cross-section of a multi-layered spherical cone under considerations

The differential equation governing the temperature in the i-th spherical layer
has the following form

V(% (r)VT; (r,1)) =0 5)

where T is the temperature, A is the thermal conductivity, pe[p,,1] and

o= cos(0,).
The boundary conditions (which consist of, among others, the perfect thermal
contacts between the neighbouring layers) are as follows:

7,(0.0)] <0 (©)
=4,,=0, i=L..n (7)

T,-(n,u)=T,-+1(r,~,u), i=1..,n-1 (8)
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oT.
_ (r)% , i=l,n—1 9

= (x‘conv (]—;1 (rn s M) - T;lmb ) - qdirect u—= qdiﬁ’usion (10)

n

where g, is the heat flux on lateral surface of the cone, a is the convective

conyv
heat transfer coefficient, 7, is the ambient temperature, ¢, 1s the direct solar
radiation and g, 1s the diffuse solar radiation, moreover, the term

oy (T, (7,-1) = T,,,,, ) is known as the convective heat transfer g,,,,, (Fig. 2).

qdirecr

/qdifﬁlsion
,/q/fconv

Fig. 2. Boundary conditions for the considered problem

3. Solution of the problem under considerations

An analytical solution to the boundary problem (5)-(10) can be presented in the
form of a product, and introducing functions M ( u) and R, (r), we write the func-
tions 7 as

];(r,u)le.(r)M(u), i=1,..,n (11)

Next, we substitute the functions 7, into the Equation (5). After separating the

1

variables and assuming the separation constant as B( + 1), where (3 is a real number,

we get two homogenous differential equations — the Lagrange equation and the Euler
equation:

) BB =0 wozus1 a2
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%(rz %}Ri(r)—B(BH)Ri(r)zo, raSr<n, i=l..n (13)

Taking into account the function (11) in conditions (6)-(10), we receive the
boundary conditions for the functions M and R,. The function M (p) satisfies the

conditions:

|M(u)|<oo, ue[uo,l) (14)
M (1) =0 (15)

The functions R, (r) satisfy the following conditions at » =0 and at interfaces

r=r, i=12,.,n-1:

|R,(0) | <o, (16)
R (r,)=R. (), i=l..n-1, (17)
dR, (r) dR.,(r) ,
A — - , =1,..,n—1. 1
i dl” i+l dl” > 1 seees ( 8)

r=r

Moreover, the function R, (r), as the radial part of the function (11), satisfies the

condition (10).
We can present the solution to the Equation (12), which satisfies the condition
(14), in the form

M(p)=c-F(n) (19)

where ¢ is a constant and F ( u) is the Legendre function of the first kind. Using

the derivative of the Legendre function [15] and the boundary condition (15), we
obtain the following equation

HoF (Ho)_PﬁH(Ho):O (20)

The roots of the Equation (20) for p,=0 (i.e. for hemisphere), are equal to
B,=2m, m=0,1,2,.... In this case, the eigenfunctions P,,(n), where m is

a positive integer number, are the Legendre polynomials. The roots of this equation
for p, e [0,1) are determined numerically, and some of them are given in Table 1.
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Table 1. Numerical values of roots B, of Eq. (20) for selected @, o= cos(q,)

®o /12 /6 n/4 /3 S5n/12 /2
Lo 0.9659258 0.8660254 | 0.7071068 0.5000000 | 0.2588190 0.0000000
Bo 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
B 14.1446160 6.8353981 4.4053292 3.1956912 2.4750556 2.0000000
B2 26.3022528 | 12.9082841 | 8.4471126 6.2195292 | 4.8859074 | 4.0000000
B3 38.3630172 | 18.9364458 | 12.4633288 | 9.2288494 | 7.2902007 6.0000000
B4 50.3952217 | 249513811 | 16.4719397 | 12.2338091 9.6924933 8.0000000
Bs 62.4151685 | 30.9606343 | 20.4772774 | 152368863 | 12.0939179 | 10.0000000
Be 744287362 | 36.9669292 | 24.4809096 | 18.2389812 | 14.4948886 | 12.0000000
B7 86.4385628 | 42.9714887 | 28.4835410 | 21.2404994 | 16.8955923 | 14.0000000
Bs 98.4460081 48.9749435 | 32.4855350 | 24.2416499 | 19.2961258 | 16.0000000
Bo 110.4518440 | 54.9776516 | 36.4870981 | 27.2425520 | 21.6965441 | 18.0000000
B1o 122.4565415 | 60.9798315 | 40.4883564 | 30.2432783 | 24.0968810 | 20.0000000
B 134.4604040 | 66.9816239 | 44.4893911 | 33.2438755 | 26.4971580 | 22.0000000
B2 146.4636360 | 72.9831238 | 48.4902569 | 36.2443752 | 28.8973899 | 24.0000000
B3 158.4663802 | 78.9843973 | 52.4909921 | 39.2447996 | 31.2975867 | 26.0000000
Bia 170.4687393 | 84.9854921 | 56.4916241 | 42.2451644 | 33.6977560 | 28.0000000
Bis 182.4707891 | 90.9864434 | 60.4921733 | 45.2454815 | 36.0979031 | 30.0000000
Bie 194.4725866 | 96.9872775 | 64.4926549 | 48.2457595 | 38.4980321 | 32.0000000
B17 206.4741757 | 102.9880150 | 68.4930806 | 51.2460052 | 40.8981461 | 34.0000000
Bis | 218.4755906 | 108.9886717 | 72.4934597 | 54.2462241 | 43.2982477 | 36.0000000
Bio | 230.4768586 | 114.9892601 | 76.4937994 | 57.2464202 | 45.6983387 | 38.0000000
B20 242.4780013 | 120.9897905 | 80.4941056 | 60.2465970 | 48.0984207 | 40.0000000
Broo | 1202.4955563 | 600.9979377 | 400.4988093 | 300.2493126 | 240.0996810 | 200.0000000
Brooo {12002.4995546{6000.9997933(4000.4998807|3000.2499311|2400.0999680|2000.0000000

The functions PBm( u), m=0,1, 2, ..., create an orthogonal set of functions [16],

and the orthogonality condition of these functions can be written as

where 9§,

1
j]’ﬁm(u)%n(u)duzN,‘; 8pps mn=0,1,2,..
Ho

n

Ho

1
is the Kronecker delta and N = J. (Pﬁm ( u))z du.

@n



Modelling of the solar heating of a multi-layered spherical cone 59

We give the general solution to the Euler equation (13) for B=8,,.
m=0,1,2, .., by

» Bm P 7(ﬁm+1)
R[’m(r)zBU(:j +Bz’i[:J , r,<r<r, i=l..,n (22)

where B, ;, B, ; are arbitrary constants. Next, using boundary conditions (17)-(18),
we obtain a set of 2n—2 equations with unknowns: B,;, B,,, i=1,..,n-1.
The received equations are the following

IBm - IET (Bl i+ By ) - ’”imm +1Bl,i+1 - ”iillimHBz,m =0 (23)
7\’ ﬁm“ zET I:B Bl i (Bm + 1)BZ,i:| i+1 |:erzzgm+1Bl i+1 (B + 1) 1-2%—?”1+1B2 z+1:| = 0
(24)

Taking into account condition (16), we assume B, , =0 in the Equations (22)-(24).

We complete the system of the Equations (23)-(24) by an equation obtained on
the basis of the boundary condition (10). Let’s remind that the functions 7 are pre-
sented by the Equation (11) as a product of two appropriate functions. To satisfy
the condition (10), we assume that

T,(r.0)=Y. R, (r) ) i=L2,.,n (25)

Next, we substitute the functions 7, given by the Equation (25), for i =n, into the
condition (10), multiply the received equation by Pﬁm(p) and integrate it with
respect to p in the interval [uo,l] Finally, we use the orthogonality condition
(21), and we get the condition for the function R, ( )

1 1
+ acaann,m (rn ) = F J. (a’caanamb + qdirect “’ + qd{[fusian )Pﬁm (H)d“

r=r, m no

an’m (r)

)\’I’l
dr

(26)

After that, we substitute the functions R, m( ), given by the Equation (22), for
i = n, into the Equation (26), and we obtain the following equation

+1)A
(acanv + M] Bl,n + (G’canv - MJ BZ,n = I_WL (27)
T

r N

n m
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1
where [, = I ( o Lomp + Qatreet M+ Laigusion )Pﬁm (u)dp. The integral 7, may be
Ho

expressed in the analytical form as

Im = (aconvz—;mb + qdiffusion )10m + 9 divect Ilm (28)
where

p A alu -F \H +
IOmZJ-Pm(u)du: P 1(2[)3 +im 1( )|

Ho

(29)

‘u:uo

1
L, = [uh, (W)du=
Ho

(30)

p=1

+(B,,+1)

2B, +1 23,1

L (g Bu(W)=f, ()
" 2B, +3

PBWZ(M)_HS,,,(“)}

H=Ho

The Equations (27) and (23)-(24) create a system of 2n—1 equations, solved for
B=B,,m=0,1,2,.., with respect to B, B,,, B,,, ..., B, ,, B, . Therefore, the

Ln>
functions 7;, i=1,..., n, are finally defined by the Equation (25), while the func-

i’

tions R, , are given by the Equation (22).

4. Numerical example

The presented example concerns the heat conduction in a spherical cone without
an internal heat source. The cone consists of n =5 layers with the following radii:
r=03m, ,=0.5m, n=0.7m, ,=0.9m and r,=1m. The physical data assumed
in the computation are the following: the thermal conductivities in the appropriate
layers are A, =80W/(mK), %,=40W/(mK), A;=20W/(mK), 1,=10W/(mK)
and A= SW/ (mK), respectively; the direct solar radiation g, =0.9-¢,,,. the
diffuse solar radiation g, =0.1-g,,,, for the solar radiation ¢, =850 W/ m’;
the ambient temperature 7, ,=20°C; the convective heat transfer coefficient
oy = IOW/ (mzK). In Figure 3, contour plots of the function 7'(r,u) illustrating
the temperature distribution in the cross-section of the considered cone for different
values of the apex angles ¢, =m/12; n/6; n/4; n/3;5n/12; n/2 are presented.
The following notations are used in the Figure: T, =T (r,,1y), Thox =T (7,.1),
and 7. =T (O, u) is the temperature in the center of the cone.
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Fig. 3. Distributions of the temperature field for the steady state heat transfer in the cross
section of the spherical cones of apex angles: @, = {n/12; n/6; n/4; n/3; 5/12; n/2}

We assume that the sun’s rays are consistent with the symmetry axis of the
cone, i.e. they fall at an angle @ =0. Then the highest temperature (on the outer

surface r=r,) is for p=1 and the lowest for p=p,. The temperature difference
between the extreme points of the cone is greater, for a higher value of ¢,. More-
over, if @, is greater, then the temperature of the center of the cone is smaller.
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5. Conclusions

The analytical solution of the heat conduction problem in a spherical cone with
azimuthal symmetry is presented. The cone consists with n concentric spherical
layers. The mathematical model is related to the determination of the steady state
of the temperature distribution in the considered medium. Additionally, the consid-
erations assume that the heating of the cone by solar energy consists of two parts of
the heat flow: direct and diffusion, with the cone being cooled by its outer surface
as a result of convective heat flow to the surroundings. A solution is derived in the
form of a product of three functions, among others, using Legendre functions of the
first kind. From the computational point of view, the derived analytical solution is
partially supported by numerical methods, among others, to determine the roots f3,,
of the Equation (20), to solve the linear system of equations (in order to determine
the coefficients), to numerically calculate the values of the Legendre function of the
first of non-integer degree. Also, the infinite sum that appears in the Equation (25)
is limited to 50 terms.

The mathematical model of the considered problem is supported by an example
that shows the temperature distributions in the cone for different values of the polar
angles. In the presented plots, it can be seen that the temperature difference between
the extreme points of the cone is greater for a higher value of the apex angle.
Furthermore, as the apex angle of the cone increases, the temperature in its center
decreases. In the example considered, it is assumed that the direct solar radiation
is consistent with the symmetry axis of the cone.

The next step of the research will be the developing of the mathematical model
that describes the unsteady state of the temperature distribution in the considered
medium. Therefore, the movement of the sun over time could be taken into account
in the considerations.
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