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Abstract. In this paper, the solar heating of a multi-layered spherical body with azimuthal 

symmetry is considered. The mathematical model is related to the determination of the 

steady state of the temperature distribution in the spherical cone consisting of concentric 

spherical layers. The solar heating is composed of two parts of the heat flux: direct and  

diffusion. Also, the simultaneous cooling of the cone by its outer surface (as convective 

heat flow to the environment) is taken into account. The proposed system of the partial  

differential equations supplemented by the adequate boundary conditions is solved in the 

analytical way by using, among others, the Legendre functions of the first kind. The sample 

results of temperature distribution in the cross-section of the cone with different polar  

angles are also presented. 

 

MSC 2010: 35Q79, 42C10 

Keywords: heat conduction, solar heating, Legendre function 

1. Introduction  

The heat transfer occurs in so many physical processes that it is difficult nowa-

days to imagine a situation in which it does not occur. The many materials that are 

the subject of scientists’ research include composite materials that are widely used 

in real physical and engineering systems. The temperature distribution is examined, 

among others, in layered slabs, cylinders or spheres [1-7]. For example, heat transfer 

in a sphere is considered in one [8], two [9] or three dimensions [10].  

Heat flows are classified in different ways and  steady and unsteady heat flow 

are two important examples of them. Although the study of unsteady state seems to 

have more applications, many scientists still study the issue of the steady state 

[11, 12]. Another criterion for the classification of issues related to heat flow may be 

the division related to various ways of heating the body from the outside. It seems 
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that in recent years, problems related to the heating of the body by solar radiation 

have attracted particular attention [13, 14]. 

The sun is our main source of energy. This energy, called solar energy, interacts 

with components of the atmosphere as it travels down to the earth. Only part of the 

solar radiation reaches the earth’s surface without scattering and absorption, and 

this is the so-called direct radiation. However, radiation that does not come directly 

from the sun moving along a straight path, but comes from all directions of the sky, 

is called diffuse radiation. In summary, radiation reaching the earth’s surface con-

sists of three components: direct radiation, diffuse radiation, and radiation reflected 

to the surface from surrounding surfaces. The absorption of solar energy by any 

bodies leads to an increase in their own temperature. 

In this paper, we present the mathematical model of the solar heating of a multi- 

-layered spherical body with azimuthal symmetry. The object of the considerations 

is the spherical cone consisting with concentric spherical layers. Not only the solar 

heating (consists of two parts of the heat flux: direct and diffusion) but also the 

cooling of the cone by its outer surface (as convective heat flow to the environ-

ment) are taken into account. An analytical solution of the problem is derived in 

the form of the product of two functions, where one of them is the Legendre func-

tions of the first kind. The temperature distribution in the cross-section of the cone 

for different polar angles is also presented.  

2. Mathematical modelling of the problem  

The starting point of our consideration is the stationary heat conduction equation 

in the form 

     , 0r T r       (1) 

where   is the thermal conductivity of the material, r  is the radial coordinate,  

  is the polar coordinate and T  is the temperature. Moreover, the operator 

  r     is defined in the spherical coordinates as follows 

          2
2

2 2 2

1
sin

sin sin

r r
r r r

r rr

                             
 (2) 

where   is the azimuthal angle coordinate. Furthermore, we assume that the  

temperature distribution in the body is azimuthally invariant (azimuthal symmetry)  

so we can drop the third term in the bracket in the equation. What’s more, we can 

simplify the operator   r    by introducing a new variable ,  related to the 

polar angle ,  by the following relationship 

  cos    (3) 
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Taking into consideration the azimuthal symmetry, the operator (2) can be written 

now in the simplified form 

         2 2

2

1
1r r r r

r rr

                        
 (4) 

We consider the stationary heat conduction in a spherical medium which con-

sists with n  concentric spherical layers which are defined by the radius interval: 

1i ir r r    ( 1,...,i n ) and 00 ,    where 00 2.     The medium is a spheri-

cal cone (Fig. 1) for 00 2     and a hemisphere for 0 2.    

 

 

Fig. 1. The main cross-section of a multi-layered spherical cone under considerations 

The differential equation governing the temperature in the i-th spherical layer 

has the following form 

     , 0i ir T r       (5) 

where T  is the temperature,   is the thermal conductivity,  0 ,1   and 

 0 0cos .    

The boundary conditions (which consist of, among others, the perfect thermal 

contacts between the neighbouring layers) are as follows: 

  1 0,T     (6) 

 
 

0

0

,
0, 1,...,

i

i

T r
q i n



 
   


 (7) 

    1, , , 1,..., 1i i i iT r T r i n      (8) 
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,
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r r

T r
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
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where 
0

q  is the heat flux on lateral surface of the cone, conv  is the convective 

heat transfer coefficient, ambT  is the ambient temperature, directq  is the direct solar 

radiation and diffusionq  is the diffuse solar radiation, moreover, the term 

  ,conv n n ambT r T    is known as the convective heat transfer convq  (Fig. 2). 

 

 

Fig. 2. Boundary conditions for the considered problem 

3. Solution of the problem under considerations  

An analytical solution to the boundary problem (5)-(10) can be presented in the 

form of a product, and introducing functions  M   and   ,iR r  we write the func- 

tions iT  as 

      , , 1,...,i iT r R r M i n     (11) 

Next, we substitute the functions iT  into the Equation (5). After separating the  

variables and assuming the separation constant as ( 1),   where   is a real number, 

we get two homogenous differential equations – the Lagrange equation and the Euler 

equation: 

        2
01 1 0, 1

d d
M M

d d

 
              

 (12) 



Modelling of the solar heating of a multi-layered spherical cone 57

      2
11 0, , 1,...,i i i i

d d
r R r R r r r r i n

dr dr


         
 

 (13) 

Taking into account the function (11) in conditions (6)-(10), we receive the 

boundary conditions for the functions M  and .iR  The function  M   satisfies the 

conditions: 

    0, ,1M       (14) 

  0' 0M    (15) 

The functions  iR r  satisfy the following conditions at 0r   and at interfaces 

,ir r  1,2,..., 1:i n   

  1 0R   , (16) 

    1 , 1,..., 1i i i iR r R r i n   , (17) 

 
   1

1 , 1,..., 1

i i

i i
i i

r r r r

dR r dR r
i n

dr dr




 

     . (18) 

Moreover, the function   ,nR r  as the radial part of the function (11), satisfies the 

condition (10). 

We can present the solution to the Equation (12), which satisfies the condition 

(14), in the form 

    M c P     (19) 

where c  is a constant and  P   is the Legendre function of the first kind. Using 

the derivative of the Legendre function [15] and the boundary condition (15), we 

obtain the following equation 

    0 0 1 0 0P P       (20) 

The roots of the Equation (20) for 0 0   (i.e. for hemisphere), are equal to 

2 ,m m  0, 1, 2, ... .m   In this case, the eigenfunctions  2 ,mP   where m  is  

a positive integer number, are the Legendre polynomials. The roots of this equation 

for  0 0,1   are determined numerically, and some of them are given in Table 1.  
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Table 1. Numerical values of roots m  of Eq. (20) for selected 0,  0 0cos    

0 /12 /6 /4 /3 5/12 /2 

0 0.9659258 0.8660254 0.7071068 0.5000000 0.2588190 0.0000000 

0 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 

1 14.1446160 6.8353981 4.4053292 3.1956912 2.4750556 2.0000000 

2 26.3022528 12.9082841 8.4471126 6.2195292 4.8859074 4.0000000 

3 38.3630172 18.9364458 12.4633288 9.2288494 7.2902007 6.0000000 

4 50.3952217 24.9513811 16.4719397 12.2338091 9.6924933 8.0000000 

5 62.4151685 30.9606343 20.4772774 15.2368863 12.0939179 10.0000000 

6 74.4287362 36.9669292 24.4809096 18.2389812 14.4948886 12.0000000 

7 86.4385628 42.9714887 28.4835410 21.2404994 16.8955923 14.0000000 

8 98.4460081 48.9749435 32.4855350 24.2416499 19.2961258 16.0000000 

9 110.4518440 54.9776516 36.4870981 27.2425520 21.6965441 18.0000000 

10 122.4565415 60.9798315 40.4883564 30.2432783 24.0968810 20.0000000 

11 134.4604040 66.9816239 44.4893911 33.2438755 26.4971580 22.0000000 

12 146.4636360 72.9831238 48.4902569 36.2443752 28.8973899 24.0000000 

13 158.4663802 78.9843973 52.4909921 39.2447996 31.2975867 26.0000000 

14 170.4687393 84.9854921 56.4916241 42.2451644 33.6977560 28.0000000 

15 182.4707891 90.9864434 60.4921733 45.2454815 36.0979031 30.0000000 

16 194.4725866 96.9872775 64.4926549 48.2457595 38.4980321 32.0000000 

17 206.4741757 102.9880150 68.4930806 51.2460052 40.8981461 34.0000000 

18 218.4755906 108.9886717 72.4934597 54.2462241 43.2982477 36.0000000 

19 230.4768586 114.9892601 76.4937994 57.2464202 45.6983387 38.0000000 

20 242.4780013 120.9897905 80.4941056 60.2465970 48.0984207 40.0000000 

100 1202.4955563 600.9979377 400.4988093 300.2493126 240.0996810 200.0000000 

1000 12002.4995546 6000.9997933 4000.4998807 3000.2499311 2400.0999680 2000.0000000 

 

The functions   ,
m

P  0, 1, 2, ... ,m   create an orthogonal set of functions [16], 

and the orthogonality condition of these functions can be written as 

    
0

1

, , , 0, 1, 2, ...
m n m m nP P d N m n
 



         (21) 

where ,m n  is the Kronecker delta and   
0

1
2

.
mmN P d




     
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We give the general solution to the Euler equation (13) for ,m    

0, 1, 2, ... ,m   by 

  
 1

, 1, 2, 1, , 1,...,

m m

i m i i i i

i i

r r
R r B B r r r i n

r r

   



   
       

   
 (22) 

where 1, 2,,i iB B  are arbitrary constants. Next, using boundary conditions (17)-(18), 

we obtain a set of 2 2n   equations with unknowns: 1, 2,, , 1,..., 1.i iB B i n   

The received equations are the following  

  1 2 1 2 1
1 1, 2, 1, 1 1 2, 1 0m m m m

i i i i i i i ir r B B r B r B
      

        (23) 

   1 2 1 2 1
1 1, 2, 1 1, 1 1 2, 11 1 0m m m m

i i i m i m i i m i i m i ir r B B r B r B
      

    
                   

  (24) 

Taking into account condition (16), we assume 2,1 0B   in the Equations (22)-(24).  

We complete the system of the Equations (23)-(24) by an equation obtained on 

the basis of the boundary condition (10). Let’s remind that the functions iT  are pre- 

sented by the Equation (11) as a product of two appropriate functions. To satisfy 

the condition (10), we assume that 

      ,

0

, , 1, 2, ...,
mi i m

m

T r R r P i n





     (25) 

Next, we substitute the functions iT  given by the Equation (25), for ,i n  into the 

condition (10), multiply the received equation by  
'm

P   and integrate it with  

respect to   in the interval  0 ,1 .  Finally, we use the orthogonality condition 

(21), and we get the condition for the function  ,n mR r  

       
0

1
,

,

1
m

n

n m

n conv n m n conv amb direct diffusion

mr r

dR r
R r T q q P d

dr N




             

  (26) 

After that, we substitute the functions  , ,i mR r  given by the Equation (22), for 

,i n  into the Equation (26), and we obtain the following equation  

 
 

1, 2,

1m nm n m
conv n conv n

n n m

I
B B

r r N 

     
       
   

 (27) 
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where    
0

1

.
mm conv amb direct diffusionI T q q P d



        The integral 
mI  may be  

expressed in the analytical form as 

   0 1m conv amb diffusion m direct mI T q I q I     (28) 

where 

  
   

0 0

1
1

1 1

0
2 1

m m

mm

m

P P
I P d



   


 

  
   

   (29) 
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   
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   
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1
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2 21
1

2 1 2 1 2 3
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m m

m m m
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P P P P
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



     



    

       
           


 (30) 

The Equations (27) and (23)-(24) create a system of 2 1n   equations, solved for 

,m   0, 1, 2, ... ,m   with respect to 1,1 1,2 2,2 1, 2,, , , ..., , .n nB B B B B  Therefore, the 

functions ,iT  1, ..., ,i n  are finally defined by the Equation (25), while the func- 

tions ,i mR  are given by the Equation (22). 

4. Numerical example 

The presented example concerns the heat conduction in a spherical cone without 

an internal heat source. The cone consists of 5n   layers with the following radii: 

1 0.3 m,r   2 0.5 m,r   3 0.7 m,r   4 0.9 mr   and 5 1 m.r   The physical data assumed 

in the computation are the following: the thermal conductivities in the appropriate 

layers are  1 80 W mK ,    2 40W mK ,    3 20W mK ,    4 10W mK   

and  5 5W mK ,   respectively; the direct solar radiation 0.9 ,direct solarq q   the 

diffuse solar radiation 0.1diffusion solarq q   for the solar radiation 2850W m ;solarq   

the ambient temperature o20 C;ambT   the convective heat transfer coefficient 

 210W m K .conv   In Figure 3, contour plots of the function  ,T r   illustrating 

the temperature distribution in the cross-section of the considered cone for different  
 

values of the apex angles 0 12; 6; 4; 3; 5 12; 2         are presented.  

The following notations are used in the Figure:  min 0, ,nT T r    max ,1 ,nT T r  

and  0,cT T   is the temperature in the center of the cone. 
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Fig. 3. Distributions of the temperature field for the steady state heat transfer in the cross 

section of the spherical cones of apex angles:  0 12; 6; 4; 3; 5 12; 2         

We assume that the sun’s rays are consistent with the symmetry axis of the 

cone, i.e. they fall at an angle 0.   Then the highest temperature (on the outer 

surface nr r ) is for 1   and the lowest for 0.    The temperature difference 

between the extreme points of the cone is greater, for a higher value of 0.  More- 

over, if 0  is greater, then the temperature of the center of the cone is smaller.  
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5. Conclusions 

The analytical solution of the heat conduction problem in a spherical cone with 

azimuthal symmetry is presented. The cone consists with n  concentric spherical 

layers. The mathematical model is related to the determination of the steady state 

of the temperature distribution in the considered medium. Additionally, the consid-
erations assume that the heating of the cone by solar energy consists of two parts of 

the heat flow: direct and diffusion, with the cone being cooled by its outer surface 
as a result of convective heat flow to the surroundings.  A solution is derived in the 
form of a product of three functions, among others, using Legendre functions of the 

first kind. From the computational point of view, the derived analytical solution is 

partially supported by numerical methods, among others, to determine the roots m  

of the Equation (20), to solve the linear system of equations (in order to determine 
the coefficients), to numerically calculate the values of the Legendre function of the 

first of non-integer degree. Also, the infinite sum that appears in the Equation (25) 
is limited to 50 terms. 

The mathematical model of the considered problem is supported by an example 
that shows the temperature distributions in the cone for different values of the polar 
angles. In the presented plots, it can be seen that the temperature difference between 

the extreme points of the cone is greater for a higher value of the apex angle.  
Furthermore, as the apex angle of the cone increases, the temperature in its center 

decreases. In the example considered, it is assumed that the direct solar radiation  
is consistent with the symmetry axis of the cone. 

The next step of the research will be the developing of the mathematical model 
that describes the unsteady state of the temperature distribution in the considered 
medium. Therefore, the movement of the sun over time could be taken into account 

in the considerations. 
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