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Abstract. The present study investigates heat and mass transport phenomena associated with 

the MHD flow of micropolar fluid over a vertically stretched Riga plate under the action of 

a uniform magnetic field applied parallel to the plate. The objective of the study is to analyze 

Soret and Dufour effects on this physical situation in the presence of chemical reaction.  

The governing partial differential equations are converted into ordinary differential equations 

using suitable similarity transformations. The equations are solved numerically by develop-

ing programming codes in MATLAB for the very efficient shooting method along with the 

fourth order Runge-Kutta scheme. The velocity, microrotation, temperature and species 

concentration distribution are presented graphically for various emerging physical parame-

ters like Hartmann number, material parameter, Soret number, Dufour number and other 

dimensionless parameters. It is found that the species concentration distribution profiles in-

crease with increasing Soret number, whereas the temperature distribution profile decreases 

with an increasing Soret number. This work also provides solutions for shear stress at 

plates, the rate of heat and mass transfer in addition to those for velocity, microrotation, 

temperature and species concentration. Comparisons with previous studies are carefully  

examined, and it is found that they are generally in agreement. 
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1. Introduction  

The study of the heat and mass transfer flow of micropolar fluids over a Riga 

plate attracts attention among researchers due to numerous applications in manu-

facturing and industries. Micropolar fluids are fluids with rotating microcompo-

nents that change the hydrodynamics of motion. This is how a micropolar liquid 

behaves differently than a Newtonian fluid. Eringen [1, 2] had presented the basic 
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hypothesis about micropolar fluid and developed the basic and fundamental law. 

Using this idea, many researchers have developed mathematical models of various 

non-Newtonian fluids for which the classical Navier Stoke theory does not seem  

to fit. The mathematical solution for heat transfer in micropolar fluid through  

an extensible plate was examined by Hassanien and Gorla [3]. 

Gailitis and Lielausis [4] conducted the initial research on a Riga plate. Accord-

ing to Ahmad et al. [5], a Riga plate generates crossing electric and magnetic fields 

capable of producing wall parallel Lorentz force, allowing fluid flow to be regulat-

ed. Slip dynamics were used by Ayub et al. [6] to control EMHD nanofluid flow 

over a horizontal Riga plate. The critical importance of a Riga plate is the reduction 

of viscous and pressure drag on submarines, as well as the prevention of boundary 

layer separation, according to Hayat et al. [7]. Iqbal et al. [8] discussed the melting 

heat transport of nanofluidic problem over a Riga plate with erratic thickness using 

the Keller Box scheme. Rasool and Zhang [9] investigated the motion of a reactive 

Eyring-Powell nanoliquid over an electromagnetic actuator in a non-porous me- 

dium, whereas Fatunmbi and Adeosun [10] focused on the nonlinear radiative flux 

with heat-mass transfer characteristics and exponential changing viscosity. Reddy 

and Krishna [11] discussed the effects of Soret and Dufour on MHD micropolar 

fluid flow over a linearly stretching sheet through a non-darcy porous medium. 

Reddy et al. [12] studied the effect of the porosity parameter on two-dimensional 

unsteady magnetohydrodynamic mixed convection heat and mass transport at the 

stagnation point, taking into account the influence of radiation and viscous dissipa-

tion. Goud et al. [13] numerically investigated the effects of Soret, Dufour and 

chemical reaction on the MHD flow of Casson fluid through an exponentially per-

meable stretching surface. Mishra et al. [14] investigated the Williamson MHD 

nanofluid flow through a wedge in porous media with variable viscosity. Goud et al. 

[15] studied the impact of chemical reaction and Soret effect on an unsteady MHD 

heat and mass transfer fluid flow over an infinite vertical plate in the presence of 

radiation and heat absorption. Reddy et al. [16] investigated the numerical solution 

of steady MHD flow over a stretching horizontal cylinder considering heat 

source/sink. Goud et al. [17] conducted an analysis of the characteristics of radia-

tion and chemical reaction on the dissipative flow through a porous vertical infinite 

plate with magnetic and Soret effects. Kumar et al. [18] investigated the impact of 

non-Newtonian MHD Casson fluid flow along a vertical porous plate, taking into 

consideration the effects of Soret, Dufour and chemical reaction. Reddy et al. [19] 

explored the multiple slip effects on steady MHD fluid flow past a non-isothermal 

stretching surface. Ahmed et al. [20] investigated the Soret and Dufour characteris-

tics of the third-grade fluid due to the stretched cylinder. Recently, a numerical 

case study of chemical reaction impact on MHD micropolar fluid flow passing  

over a vertical Riga plate was studied by Goud et al. [21].  

To the best of our knowledge, there are no previous studies on micropolar fluid 

flows generated by expanding Riga plate to investigate the effects of Soret and 

Dufour in presence of the magnetic field. The following are the novelties of the 

present study:  
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 It involves an efficient numerical method with a reasonably good error tolerance 

for wide range of parameters values. Besides the numerical procedure, the thermo- 

fluidics considered here have ample applications, where in the configurations 

may exist as a single independent unit or may be a part of some larger setup. 

 Goud et al. [21] neglected the combined impact of Soret and Dufour on MHD 

micropolar fluid with chemical reaction over a stretching Riga plate, which  

affects the heat and mass transfer phenomena significantly. 

Motivated by the above works, the objectives of this study is to investigate  

the Soret and Dufour effects on MHD micropolar fluid flow passing over a vertical 

Riga plate with chemical reaction. This is an addition of Soret and Dufour effects 

to the problem discussed by Goud et al. [21]. The governing equations of the flow 

system are solved numerically by developing programming codes in MATLAB  

for the shooting method along with a fourth order Runge-Kutta initial value 

scheme. Direct comparison with published results for specific scenarios confirmed 

the veracity of our present study. 

2. Mathematical formulation 

We consider a fully developed steady 2-dimensional MHD flow of a micropolar 

fluid with mass and heat transfer over a Riga plate. The viscous flow caused due to 

the movement of the Riga plate positioned in an electrically conducting incom-

pressible liquid. It is considered that the x-axis is along the Riga plate. 

 

   

 Fig. 1. Geometry of Riga plate Fig. 2. Physical description of flow system 

A uniform magnetic field is applied parallel to the plate along a positive direc-

tion of x. The magnetic Reynolds numbers are assumed to be extremely low,  

and the magnetic force is used along a path perpendicular to a stretched platter and 

is induced magnetic force. It is assumed that the captivated electrical field is zero 
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so that the Hall current is negligibly small, and the fluid properties are isotropic 

and consistent along their length and breadth of the motion. The physical geometry 

of the plate and the flow are shown in Figures 1 and 2. 

With the above assumptions and physical situation, the governing equations in 

the Cartesian coordinate system are as follows [21]: 
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The boundary conditions of the physical situation are: 

 
; 0; 0; ; at 0

0; 0; ; as
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 (6) 

Here, 
w

x
j

u b

 
   is the micro-inertia density that specify the length of the  

reference, k  is the thermal conductivity, N  is the microrotation or angular velocity, 

  is the spin-gradient viscosity and is given by 
2

j


    
 

. 

We introduce the following usual similarity transformations: 
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Using the relation u
y





 and v

x


 


 (where   is the stream function),  

we get ( )u xbf   and  .v b f    
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Using above substitutions, equation (1) is identically satisfied and equations  

(2)-(5) are transformed into the following:  

    2
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The corresponding boundary conditions  are: 
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 (12) 

Physical quantities of interest 

The quantities of physical interest are the skin-friction coefficient, the local heat 

transfer (Nusselt number) and the local mass transfer (Sherwood number). 

The wall shear stress is given by 
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The local skin friction coefficient ( )fC  is defined as: 
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The rate of heat transfer from the wall wq  is  
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The Nusselt number Nu  is given by  
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The equation defining the couple’s stress is 
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Consequently, the dimensionless couple stress is given by 
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The mass flux can be defined as  

    
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Sherwood number Sh  is defined as 

 
 

w

M w

j x
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D C C




 where 
2

w

bx
Re


 is the local Reynolds number. (20) 

3. Methodology  

We have solved the non-linear differential equations (8)-(11) along with the 

boundary conditions (12) numerically by developing programming codes in 

MATLAB using the shooting method along with the fourth order Runge-Kutta 

scheme. The coupled nonlinear ordinary differential equations, along with the 
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boundary conditions, have been transformed into a system of simultaneous first- 

-order equations for the unknowns using the method of superposition. To proceed, 

we define the following: 

1 2 3 4 5 6 7 8 9, , , , , , , , .y f y f y f y g y g y y y y                 

Using these, equations (8)-(11) can be written as 
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With the boundary condition 
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To integrate equations (21)-(24), appropriate initial guess values for the missing 

boundary conditions are selected, followed by the integration process.  

4. Results and discussion  

The nonlinear governing equations (8) to (11) with boundary conditions (12) 

have been solved numerically using the shooting method with the Runge-Kutta 

scheme. It is seen that the convergence of the iteration process is quite rapid. 

From Figures 3-18, we have shown the effect of physical quantities such as M, 

K, Pr, Ec, Sc, Sr and Du on fluid velocity, angular velocity, fluid temperature and 

fluid concentration.  

Figures 3 and 4 illustrate the impact of Hartman number (M) and material  

parameter (K) on the velocity profile. From Figure 3, it is observed that flow velocity 

increases with the increasing values of M. Due to the dominant influence of the  
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induced Lorentz force in the positive x-direction, higher values of the modified 

Hartman number indicate an increasing trend. Figure 4 shows that the velocity pro-

file increases with the increasing values of K. With an increase in K, the micro-

concentration of the fluid also increases, leading to changes in the flow behavior. 

Consequently, the boundary layer thickness increases. 
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 Fig. 3. Velocity profile for different values of M Fig. 4. Velocity profile for different values of K  
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 Fig. 5. Angular velocity profile for different K Fig. 6. Angular velocity profile for different M  

Figures 5 and 6 demonstrate the effect of K and M on the angular velocity profile. 

Figure 5 reveals that the angular velocity increases significantly for larger values of 

the material parameter K. Figure 6 depicts that angular velocity decreases until it 

reaches the position 3.4   and, thereafter, a reversed effect is observed. 

Figure 7 is plotted to understand how the magnetic parameter M influences the 

temperature profile. It is seen that the temperature profile decreases with M. Figure 8 

indicates how temperature profile changes with K. It is observed that the tempera-

ture profile declines with K. The effect of Pr on the temperature profile is shown  

in Figure 9. It is seen that temperature profile decreases with Pr. This is due to the 

fact that, when the Pr increases, the thermal conduction of the medium decreases, 

leading to a reduction in the thermal boundary layer thickness.  
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 Fig. 7. Temperature profile for variation of M Fig. 8. Temperature profile for variation of K 
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 Fig. 9. Temperature profile for variation of Pr Fig. 10. Temperature profile for variation of Ec 
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 Fig. 11. Temperature profile for variation of Sr Fig. 12. Temperature profile for variation of Du 

The effect of Ec on the temperature profile is given in Figure 10. It has been 

found that increasing the value of Ec causes enhancement in temperature distribu-

tion and boundary layer thickness. Figure 11 shows the effect of Sr on the tempera-

ture profile, and it is observed that the temperature profile decreases with Sr.  
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An increase in Sr leads to a decrease in the thermal boundary layer thickness,  

resulting in a reduction in temperature. Figure 12 depicts the impact of Du on  

temperature profile. It is evident that temperature profile increases with Du. 

Figure 13 depicts the impact of M on the concentration profile. It is seen that  

the temperature profile decreases with M. Figure 14 highlights the effect of K on 

the concentration profile. This shows that concentration profile decreases with the 

increasing values of K.  
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 Fig. 13. Concentration profile for variation of M Fig. 14. Concentration profile for variation of K 
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 Fig. 15. Concentration profile for variation of Kc Fig. 16. Concentration profile for variation of Sc 

Figure 15 illustrates the variation of concentration profiles with Kc. It is found 

that the concentration profile decreases with Kc. This is because the chemical reac-

tion in this system consumes the chemical, resulting in a reduction in the concen-

tration profile. Figure 16 shows the effect of Sc on the concentration profile, It is 

observed that the concentration profile decrease with Sc. An increase in Sc results 

in a reduction in the molecular or mass diffusivity of the fluid, leading to a de-

crease in the concentration of fluid particles. Figure 17 and 18 illustrate the impact 

of Sr and Du on concentration profile. From Figure 17, it is observed that fluid 

concentration increases with Sr. Elevated values of Sr lead to a stronger convective 
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flow, resulting in an increase in concentration. From Figure 18, it is seen that there 

is a decrease in fluid concentration until it reaches 1.4   and thereafter the reverse 

effect is observed. 
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 Fig. 17. Concentration profile for variation of Sr Fig. 18. Concentration profile for variation of Du 

Table 1 illustrates the changes in (0),f  (0)   and (0)   due to the influence 

of M, K, and ,  which shows a good agreement with the previously published 

work by Reddy et al. [21].  

Table 1. Comparison results for (0),f   (0)   and (0)  for different values of 

M, K and  at Pr = 6.2, Sc = 0.22, Ec = 0.02 and Kc = 0.1 

M K   

(0)f   (0)   (0)  

Reddy et al. 

[21] 

Present 

study 

Reddy et al. 

[21] 

Present 

study 

Reddy et al. 

[21] 

Present 

study 

0 

0.2 1 

0.90975 0.909747 1.865537 1.865467 0.26522 0.26531 

0.5 0.699167 0.699163 1.900295 1.900268 0.280001 0.280001 

1 0.496288 0.496281 1.930793 1.930774 0.292783 0.292773 

1 

0 

1 

0.950328 0.950329 1.84571 1.84569 0.262482 0.262457 

0.5 0.769444 0.769439 1.906578 1.906561 0.27529 0.27533 

2 0.520359 0.520352 2.017546 2.017552 0.296674 0.296665 

1 0.2 

0.2 0.815108 0.815102 1.883016 1.883025 0.285358 0.285345 

0.4 0.837795 0.837789 1.878961 1.878954 0.276605 0.276619 

0.6 0.851606 0.851611 1.876191 1.876189 0.272101 0.272096 

 
From Table 2, it has been observed that the skin friction coefficient represented 

by Cf decreases with increasing values of Hartman number (M) whereas, an oppo-

site effect has been observed for the rate of local heat transfer in terms of Nusselt 

number (Nu) and the rate of mass transfer in terms of Sherwood number (Sh).  
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With the increase of Sr, Nusselt number (Nu) increases but the Sherwood number 

(Sh) decreases. In case of Dufour number (Du), opposite results are seen i.e.,  

Nu decreases and Sh increases with the increasing values of Du. 

Table 2. Values of skin friction coefficient (Cf), Nusselt number (Nu) and  

Sherwood number (Sh) for various values of M, Sr, and Du 

M Sr Du Cf Nu Sh 

0.1 

0.1 0.3 

0.43329 3.616441 0.868689 

0.2 0.37625 3.707640 0.889100 

0.3 0.32444 3.778522 0.905946 

0.4 

0.4 

0.41 

0.23024 1.191935 0.927263 

0.5 0.23024 1.194861 0.912911 

0.6 0.23024 1.197814 0.898445 

0.5 0.7 

0.7 0.19107 1.145721 0.906952 

0.8 0.19107 1.113047 0.911030 

0.9 0.19107 1.079863 0.915179 

5. Conclusion 

In the present study, the heat and mass transport phenomena of MHD micropo-

lar fluid flow over a vertically stretched Riga plate with the Soret and Dufour effect 

are examined numerically. The collective impact of the Soret effect, Dufour effect, 

micropolar, magnetic field and chemical reaction over a Riga plate are described. 

The results of this study provide a flow and heat transfer analysis in a micropolar 

fluid, which will aid other investigators or engineers in selecting suitable parame-

ters for heat transfer optimisation in modern industry. From this present investiga-

tion, it can be concluded that: 

 The velocity of the fluid increase by increasing the value of Hartman number 

(M) and material parameter (K). 

 Higher values of material parameter K, angular velocity or micro-rotation g() 

is higher while the effect of magnetic field is almost opposite. 

 The temperature distribution () decreases with M, K, Pr and Sr, whereas  

increases with Ec and Du. 

 As the Hartman number and material parameter increased, concentration () 

decreases. 

 An increase of the Soret number (Sr) leads to an increase of the concentration 

profile. 

 The magnitude of the skin friction coefficient is less significant for micropolar 

fluids. 

 This analysis has revealed that the flow field has a significant effect on the 

Magnetic parameter (M), Soret numbers (Sr), and Dufour numbers (Du). 
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Nomenclature 

u, v Velocity components along x and y   Cw Species concentration at the surface 

 direction [m s–1]   [mol m–3] 

 Coefficient of dynamic viscosity   C∞ Fluid concentration outlying the  

 [kg m2
 s–1]   surface [mol m–3] 

 Free stream density [kg m–3]  T Temperature [K] 

 Coefficient of kinematic viscosity   Tw Wall temperature [K] 

 [m2
 s–1]  T∞ Ambient temperature [K] 

d Width of magnets and electrodes  Pr Prandtl number 

 Coefficient of Vortex viscosity  Ec Eckert number 

N Angular velocity or micro-rotation  KC Chemical reaction parameter 

 Viscosity of spin gradient  Du Dufour Number 

b Constant  K Material parameter 

k Thermal conductivity [ m–1
 K–1]   Stream function [m2

 s–1] 

 Dimensionless parameter   Dimensionless temperature [K] 

DM Chemical molecular diffusivity   Dimensionless concentration 

 [m2
 s–1]   [mol m–3] 

j0 Current Density  Cf The local skin friction coefficient 

j Micro inertia density  Nu Nusselt number 

M0 Magnetization of permanent magnet  Sh Sherwood number 

CP Specific heat at constant pressure   Sc Schmidt number 

 [J kg–1
 K–1]  M Modified Hartman number 

uw Surface velocity [m s–1]  Sr Soret Number 

C Concentricity [mol m–3]  w Wall shear stress 
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