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Abstract. In this paper, we obtain some closed form series solutions for the time fractional 

diffusion-wave equation (TFDWE) with the generalized time-fractional Caputo derivative 

(GTFCD) associated with a source term in polar coordinates. These solutions are found using 

generalized Laplace and Hankel transforms. We obtained the closed form series solutions  

in the form of the Polygamma function. The effect of the fractional order derivative on the 

diffusion-wave variable is illustrated graphically. 
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1. Introduction  

Fractional differential equations (FDEs) have been applied to an increasing  

number of fields such as physics, engineering, and other sciences [1-7]. The time- 

-fractional diffusion models have been used in various fields like biology, physics, 

chemistry, and finance. The time fractional diffusion equations preferably possess 

advantages for describing anomalous diffusion phenomena due to the memory prop-

erty of fractional order derivatives [2-7]. Whereas the TFDWEs can be used to model 

the propagation of diffused waves in viscoelastic media [8]. 

The classical diffusion and wave equation is defined as [8] 

��

��
= � ∆ �,   

�	�

��	
= � ∆ �. 
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So, the TFDWE can be obtained from the classical diffusion or wave equation  

by replacing the first or the second order time derivative with a fractional derivative 

of order 0 < 
 < 2 as follows:  

������ = � ∆ �,   0 < 
 < 2. (1) 

These equations describe many important physical phenomena in different fields 

[9, 10]. Therefore, it has attracted the interest of many researchers in investigating 

solutions of these types of equations [11-21].   

Investigating intermediate processes between diffusion and wave propagation 

modeled by the generalized fractional derivatives is considered as a hot topic in frac-

tional calculus [22]. So, in this paper, we investigate the TFDWE in polar coordi-

nates with the GTFCD [23]. Povstenko [16, 24] investigated the solution of TFDWE 

in polar and cylindrical coordinates with the time Caputo fractional derivative,  

and he found the solution in the integral form only. Here, we will obtain the closed 

form series solution of the TFDWE in polar coordinates with the GTFCD  in terms 

of the Polygamma function. 

The rest of this paper is organized as follows: A statement of the problem is  

illustrated in Section 2. Some basic definitions of the generalized fractional deriva-

tives are given in Section 3. The closed form series solution of the problem with 

different cases is investigated in Section 4. Finally, we end the paper with the  

conclusion section. 

2. Statement of the problem 

TFDWE could be expressed in either Cartesian, cylindrical, or spherical coordi-

nates. The choice of coordinates depends mainly on the geometry of the domain with 

which we are dealing. As simple rules, choose the coordinate system which makes 

the boundary conditions easy to apply, as introduced in [25], which solves the flow 

in pipes, axial, radial and torsional using polar cylindrical coordinates [25]. 

Consider the TFDWE with a source term in polar coordinates that is defined  

as follows [26]: 

������, �� = � ������, �� + 1��� ����, ��� + ���, ��,   0 < � ⩽ ∞   � < � ⩽ ∞.   (2) 

The initial conditions are given by  

 ���, �� = � ���, 0 ≤  
 ≤ 2,   (3) 

 �"��, �� = �	���, 1 ≤  
 ≤ 2, (4) 

where � is the diffusion-wave variable, � is the radial coordinate, � is a constant,  � is the time, ���, �� is the source term and ����� ���, �� is the generalized Caputo 

derivative of � with respect to the function # of order 
, which is given by [23, 27, 28]  
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����� $��� =    1%�& − 
� ( )#��� − #���*+,�, "
� $�+��-� #.�-� �-,        (5) 

Where & − 1 < 
 < & and %�
� is the gamma function. The solution of Eq. (2) will be 

obtained using the generalized Laplace transform [23, 29] and Hankel transform [30] 

in the following three cases: 

Case 1:  At  ���, �� = 0,   � ��� = / 0���� ,   �	��� = 0, (6) 

Case 2:  At  ���, �� = 0,   � ��� = 0,   �	��� = / 0���� , (7) 

Case 3:  At  ���, �� = 0��#��� − #���� 0���� ,   � ��� = 0,   �	��� = 0, (8) 

where / is a constant, 0��� �&� 0��� are Dirac delta functions.  

3. Some basic definitions  

In this section, we introduce some basic definitions. 

Definition 1. [31] The PolyGamma function 1�2� is given by 

 1�3� = %.�3� %�3�, . (9) 

Definition 2. [30] The zeroth-order Hankel transform of the function $��� is  

given by  

ℋ56$���7 = $85�9� = ( �
:

5
;5��9�$��� ��, (10)

where ;5�3� is the zeroth order first kind Bessel function.  

Definition 3. [30] The inverse zeroth-order Hankel transform of the function $85�9� 

is given by  

ℋ5, <$85�9�= = $��� = ( 9
:

5
;5��9�$85�9� �9. (11)

Lemma 1. [30] The following identities holds true 

1 − ℋ5 >�	$�����	 + 1� �$����� �? = − 9	 $85�9�. (12)

2 − ℋ5 @ 0���� A = 1. (13)
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Lemma 2. [23] The generalized Laplace transform of the operator (5) is 

B�< ����� $���= = C� DB�6$���7 − E C,F, $�F����
+, 

FG5
H. (14)

Lemma 3. [32] The inverse generalized Laplace transform of the modified Bessel 

function of the second kind I5 is given by 

B�, > 1Cµ  I5 K �
CL	 M? = E �	F��#��� − #����LFNµ,  

2 ∗ 4F �Qǃ�	 %�µ + SQ� ∙
:

FG5
 

∙ K21�Q + 1� + S1�µ + SQ� − ln K�	��#��� − #����L
4 MM, 

(15)

where �, µ and S are constants.  

Proof. See appendix A.  

4. Closed form series solution of Eq. (2)  

Applying zeroth-order Hankel transform (10) to Eq. (2), we get  

�����9, �� = �ℋ56������, �� + 1��� ����, ���7 + ��9, ��, (16)

Substituting Eq. (12) into Eq. (16), we get  

 �����9, �� = −�9	�� ��9, ��� + ��9, ��. (17) 

Apply the generalized Laplace transform (14) to Eq. (17) to get 

 C�B�)��9, ��* − C�, ��9, �� − C�,	�"�9, �� = −� Q	 B�)��9, ��* + 

 + B����9, ���. (18) 

Applying conditions ��9, �� = � �9� and �"�9, �� = �	�9� in Eq. (18), we obtain 

B����9, ��� = C�, 
C� + �9	 � �9� + C�,	

C� + �9	 �	�9� + B����9, ���C� + �9	 . (19)

4.1. Closed form series solution of Eq. (2) for case 1 

Applying zeroth-order Hankel transform (10) to Eq. (6) and using Eq. (13),  

we obtain 

 ��9, �� = 0, � �9� = /, �	�9� = 0. (20) 
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Substituting Eq. (20) into Eq. (19), we obtain 

B�)��9, ��* = C�, 
C� + �9	  /. (21)

Applying the inverse zeroth-order Hankel transform (11) to Eq. (21), we get 

B����9, �� = / ( 9;5��9� C�, 
C� + �9	 �9:

5 = WX C�,  I5 Y �
√�C,�[. (22)

Apply the inverse generalized Laplace transform (15) to Eq. (21) to obtain 

���, �� = E �	F / )#��� − #���*,�,�F
2 ∗ �FN ∗ 4F �Qǃ�	 %�1 − 
 − 
Q�

:

FG5
∙ 

∙ D21�Q + 1� − 
1�1 − 
 − 
Q� − ln D�	)#��� − #���*,�
4� HH. 

(23)

 
a) b) 

  

c) d) 

    

Fig. 1. The diffusion profile (23) when: a) � = 30, #��� = �, / = 1, � = 1, � = 0,  
at different values of 
; b) 
 = 0.9, #��� = �, / = 1, � = 1, � = 0, at different  

values of time; c) � = 30, #��� = ln���, / = 1, � = 1, � = 1, at different values  

of 
; d) 
 = 0.9, #��� = ln���, / = 1, � = 1, � = 1, at different values of time 



10 I. Elkott, M.S. Abdel Latif, I.L. El Kalla, A.H. Abdel Kader 

a) b) 

c) d) 

4.2. Closed form series solution of Eq. (2) for case 2 

Applying zeroth-order Hankel transform (10) to Eq. (7) and using Eq. (13),  

we obtain 

 � �9� = 0,  �	�9� = /  and  ��9, �� = 0,   (24) 

Substituting Eq. (24) into Eq. (19), we obtain 

B����9, ��� = C�,	
C� + �9	 /. (25)

Applying the inverse zeroth-order Hankel transform (11) to Eq. (25), we get 

B����9, �� = / ( 9 ;5��9� C�,	
C� + �9	 �9:

5 = /� C�,	 I5 Y �
√�C,�[. (26)

Apply the inverse generalized Laplace transform (15) to Eq. (26) to obtain 

���, �� = E �	F / )#��� − #���* ,�,�F
2 ∗ �FN ∗ 4F�Qǃ�	 %�2 − 
 − 
Q�

:

FG5
∙ 

∙ D21�Q + 1� − 
1�2 − 
 − 
Q� − ln D�	 )#��� − #���*,�
4� HH. 

(27)

 

  

  

Fig. 2. The wave profile (27) when: a) � = 30, #��� = �,  / = 1, � = 1, � = 0,  
at different values of 
; b) 
 = 1.5, #��� = �, / = 1, � = 1, � = 0, at different  

values of time; c) � = 20, #��� = ln���,  / = 1, � = 1, � = 0, at different values  

of 
; d) 
 = 1.5, #��� = ln���, / = 1, � = 1, � = 0, at different values of time 
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4.3. Closed form series solution of Eq. (2) for case 3 

Applying the zeroth-order Hankel transform (10) to Eq. (8) and using Eq. (13), 

we get 

 � �9� = 0.  �	�9� = 0  and  ��9, �� = 0��#��� − #����, (28) 

Substituting Eq. (28) into Eq. (19), we obtain 

B����9, ��� = 1C� + �9	. (29)

Applying the inverse zeroth-order Hankel transform (11) to Eq. (29), we get 

B����9, �� = / ( 9;5��9� 1C� + �9	
:

5 �Q = 1� I5 Y �
√�C,�[. (30)

Apply the inverse generalized Laplace transform (15) to Eq. (30) to obtain 

���, �� = E �	F )#��� − #���*,�F, 
2�FN  4F �Qǃ�	 %�−
Q�

:

FG5
∙ 

∙ D21�Q + 1� − 
1�−
Q� − ln D�	)#��� − #���*,�
4� HH. 

(31)

 

  

  

Fig. 3. The diffusion profile (31) when: a) � = 1, #��� = �, / = 1, � = 1, � = 0,  
at different values of 
; b) 
 = 0.5, #��� = �, / = 1, � = 1, � = 0, at different  

values of time; c) � = 2, #��� = ln���, / = 1, � = 1, � = 0, at different values  

of 
; d) 
 = 0.5, #��� = ln���, / = 1, � = 1, � = 0, at different values of time 
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5. Discussion and conclusions  

In the case of #��� = �, Figures 1a, 1b, 2a, 2b, 3a and 3b show the effect of the 

parameter 
 and time � on the diffusion-wave profile in the case of the Caputo frac-

tional derivative. In the case of ��� = ln ���, Figures 1c, 1d, 2c, 2d, 3c, and 3d show 

the effect of the parameter 
 and time on the diffusion-wave profile in the case of 

fractional Hadamard fractional derivative. In general, from Figures 1-3, it can be 

observed that the diffusion-wave profile decays with increasing �. Furthermore, it is 

observable from Figures 1, and 2 that at small values of �, the diffusion-wave profile 

decreases with an increase in the value of 
 and �, whereas at large values of �,  

the diffusion-wave profile increases with an increase in the value of 
 and time �. 

Also, we can realize that from Figure 3, the diffusion profile increases with an in-

crease in the value of 
 and time �.  So, we can conclude that the generalized Laplace 

and Hankel transforms are utilized as effective tools in solving TFDWE with the 

GTFCD. New solutions of the linear TFDWE in polar coordinates with a source  

term are obtained for some different cases of the initial conditions. The results are 

illustrated graphically for some different cases. 
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Appendix A 

Theorem [16], Let, #: [�, ∞� → a be real valued functions such that #��� is continuous  

and #.��� > 0 on [0, ∞� and such that generalized laplace transform of $ exists. Then  

 B�6$���7�C� = B c$ d#, )� + #���*ef �C�, (A1) 

Where B6$7 is the usual Laplace transform of $. The inverse Laplace transform of the  

modified Bessel function of the second kind I5 [21] is  

B, > 1Cµ  I5 K �
CL	 M? = E �	F  �LFNµ,  

2 ∗ 4F �Qǃ�	 %�µ + SQ�
:

FG5
 

K21�Q + 1� + S1�µ + SQ� − ln K�	�L
4 MM. 

(A2)

So, the inverse generalized Laplace transform of modified Bessel function second kind  I5 is  

B�, > 1Cµ  I5 K �
CL	 M? = E �	F ��#��� − #����LFNµ,  

2 ∗ 4F �Qǃ�	 %�µ + SQ�
:

FG5
 

K21�Q + 1� + S1�µ + SQ� − ln K�	��#��� − #����L
4 MM. 

(A3)

 


