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Abstract. This paper presents the Chebyshev Integral Operational Matrix Method (CIOMM)
for the numerical solution of two-dimensional Fredholm Integro-Differential Equations
(2D-FIDEs). The process of the method is obtaining the operational matrix of integration
by evaluating a 2D integral of 2D Chebyshev polynomial basis functions and assuming
approximate solutions of the 2D-FIDEs as a truncated 2D Chebyshev series. This leads to
a system of linear algebraic equations which are solved to obtain the values of the unknown
constants using Maple 18. Some numerical problems are solved to illustrate the practicability
of the method.
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1. Introduction

Many problems in science, engineering, modelling and other disciplines are pre-
sented as integral and integro-differential equations. It is difficult to obtain the analyt-
ical solutions of most of these equations because of the complexity involved, there-
fore it is important to develop numerical methods to obtain the approximate solutions.
Over the past fifty years, substantial progress in developing analytical and numerical
solutions of integral equations of different kinds; linear and nonlinear cases have been
considered [1]. Although several numerical methods for approximating the solutions
of one-dimensional (1D) integral and integro-differential equations are known, only
a few of them have been applied to two-dimensional (2D) problems. Methods for
treating two-dimensional (2D) integral and integro-differential equations also deserve
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more consideration, as these equations have many applications in physics, mechan-
ics, modelling, engineering and other applied sciences. [1] and [2], investigated the
numerical solution of two-dimensional Fredholm integral equations by the Galerkin
method using approximating subspace, a special space of spline functions. [3] and
[4] developed the Regularization Method and the Differential Transform Method
respectively for two-dimensional Fredholm integral equations of the first kind.
applied 2D Chebyshev polynomials to solve 2D integral equations using a colloca-
tion scheme. [6] used integral collocation approximation methods for the numerical
solution of linear 1D integro-differential equations. Integral collocation approxima-
tion methods were also employed by [7] for the numerical solution of high-orders
linear Fredholm-Volterra integro-differential equations. [8] employed the Legendre
Galerkin method for solving fractional integro-differential equations of the Fredholm
type.

Recently, most works on 2D integral and integro-differential equations focused
on the use of an operational matrix of integration and differentiation via orthogonal
functions which also resulted into systems of algebraic equations and produced better
results and faster in computation. For instance, [9] derived the operational matrices
of integration, differentiation and product of Bernstein polynomials to solve prob-
lems involving calculus of variations, differential equations, optimal control and in-
tegral equations. [10] solved a class of non-linear Volterra integral equations by using
operational matrices of two-dimensional triangular orthogonal functions. [11] pre-
sented a numerical solution of non-linear 2D Volterra-Fredholm integro-differential
equations using operational matrices of integration and differentiation generated
from a two-dimensional triangular function. Also, [12] presented a method based
on operational matrices of Taylor polynomials to solve 1D linear Fredholm-Volterra
integro-differential equations for which operational matrices obtained converted
integro-differential equations to systems of algebraic equations without the use of
the collocation scheme.
According to [13], a typical way to solve functional equations is to express the so-
lution as a linear combination of the so-called basis functions. These basis func-
tions can, for instance, be either orthogonal or non-orthogonal bases. Approximation
by the orthogonal family of basis functions has found wide application in science
and engineering. The most frequently used orthogonal functions are sine-cosine
functions, block pulse functions, Legendre, Chebyshev and Laguerre polynomials.
The main idea of using an orthogonal basis is that the problem under consideration
reduces to a system of linear or nonlinear algebraic equations. Much work has been
done with the application of 1D Chebyshev polynomials for the solutions of integral
and integro-differential equations. For instance, [14] used a shifted 1D Chebyshev
polynomial for the solution of 3D Volterra integral equations of the second kind.
Various mathematical models, such as [15-20] and most of the references referenced
therein, have been redefined in the context of fractional calculus and in epidemiol-
ogy. In other to improve on the existing methods in the literature, this paper therefore
presents a Chebyshev integral operational matrix method (CIOMM) for the numeri-
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cal solutions of 2D Fredholm integro-differential equations. The computational time
is reduced as compared to other methods in the literature. The general form of the
class of problem considered in this work is given as:

u(x, t)+uxt(x, t)+
∫ 1

−1

∫ 1

−1
k(x, t,y,z)u(y,z)dydz = f (x, t); x, t ∈ [−1,1], (1)

such that:

u(−1,−1) = u0; u(−1, t) = g(t); u(x,−1) = h(x). (2)

Where (x, t) ∈ [−1,1]× [−1,1], u(x, t) is an unknown scalar-valued function, f (x, t)
and k(x, t,y,z) are continuous functions on [−1,1]2 and [−1,1]4 respectively, uxt is
the derivative of u(x, t) with respect to x and t, h(x) and g(t) are known functions and
u0 is a given number.

Equations like (1) above are usually solved by expressing the solution as a linear
combination of basis functions which are either orthogonal or non-orthogonal. Some
definitions and properties of Chebyshev polynomials and Chebyshev series expansion
can be found in [13].

2. Construction of integral operational matrix of 2D
Chebyshev polynomials

Chebyshev polynomials are a well-known family of orthogonal polynomials on
the interval [−1,1] and have many applications. They are widely used because of their
good properties in the approximation of functions [21]. The problem of approximat-
ing a function is a central problem in numerical analysis due to its importance in the
development of software for digital computers [22]. Chebyshev polynomials are em-
ployed as basis functions to approximate the solution of several numerical problems
involving integral and integro-differential equations. According to [23], Chebyshev
polynomials of the first kind valid in [−1;1] are defined as

Tn(x) = cos(ncos−1x), (3)

where,

T0(x) = 1,

T1(x) = x,
(4)

and the recurrence relation is given as

Tn+1(x) = 2xTn(x)−Tn−1(x); n ≥ 1. (5)
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The orthogonality property of 1D Chebyshev polynomials (Ti(x); i = 0,1, ...N)
with respect to the weight function:

w(x) =
1√

1− x2
, (6)

on the interval [−1,1] is given by

(Ti(x),Tj(x))w(x) =
∫ 1

−1
Ti(x)Tj(x)w(x)dx =


0, i ̸= j
π

2
, i = j ̸= 0

π, i = j = 0.

(7)

Given that the basis vector of 1D Chebyshev polynomials is [T0(x) T1(x) ... TN(x)]T ,
then the basis vector of 2D Chebyshev polynomials denoted by
(Ti j(x, t) = Ti(x)Tj(t); i, j = 0, ...,N) is given as follows:

[T0(x)T0(t) . . . T0(x)TN(t) T1(x)T0(t) . . . TN(x)TN(t)]
T = (CN ⊗BN)

T (8)

where CN = [T0(x) T1(x) ... TN(x)]
T and BN = [T0(t) T1(t) ... TN(t)]

T are both 1D
Chebyshev vectors.
The orthogonality properties for the 2D Chebyshev polynomials with respect to the
weight function:

w(x, t) =
1√

1− x2
√

1− t2
, (9)

on the interval [−1,1]× [−1,1] is expressed as

(Ti j(x, t),Tkl(x, t))w(x,t)=
∫ 1

−1

∫ 1

−1
Ti j(x, t)Tkl(x, t)w(x, t)dxdt =



π2

4
, i = k ≠ 0, j = l ̸= 0

π2

2
, i = k = 0, j = l ≠ 0

π2

2
, i = k ≠ 0, j = l = 0

π
2, i = k = 0, j = l = 0

0,else.
(10)

The matrix form obtained by the evaluation of 2D integral of Chebyshev polyno-
mial basis functions is given by:∫ x

−1

∫ t

−1
Ti(s)Tj(r)dsdr = QTi j(x, t) ; i, j = 0,1,2, (11)

where Q is the (N + 1)2 × (N + 1)2 operational matrix of integration of the 2D
Chebyshev basis functions.
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3. Description of the proposed method

This section describes the proposed method mentioned earlier.
Chebyshev Integral Operational Matrix Method (CIOMM)
This work considers the 2D Fredholm integro-differential problem given in (1)
and (2).
Any function φ(x, t) on [−1,1]× [−1,1] can be expanded by the 2D Chebyshev poly-
nomials approximation and truncated as follows:

φ(x, t) =
∞

∑
i=0

∞

∑
j=0

αi jTi j(x, t)≈
N

∑
i=0

N

∑
j=0

αi jTi(x)Tj(t), (12)

where,

αi j =
< φ(x, t),Ti j(x, t)>w(x,t)

< Ti j(x, t),Ti j(x, t)>w(x,t)
. (13)

The first process of the method is to obtain the approximate solution of problem
considered as a truncated 2D Chebyshev series defined by

u(x, t)≈ uN(x, t) =
N

∑
i=0

N

∑
j=0

ai jTi(x)Tj(t), (14)

and

uxt(x, t)≈ ψN(x, t) =
N

∑
i=0

N

∑
j=0

ei jTi(x)Tj(t). (15)

The matrix forms of (14) and (15) are given by:

uN(x, t) = T T (x, t)A, (16)

ψN(x, t) = T T (x, t)E, (17)

where

A = [a00, . . . ,a0N , . . . ,aN0, . . . ,aNN ]
T , (18)

E = [e00, . . . ,e0N , . . . ,eN0, . . . ,eNN ]
T , (19)

are unknown vectors, and N is any natural number.
The other functions in (1) and (2) can also be expanded in terms of the 2D Chebyshev
basis as

f (x, t)≈ fN(x, t) =
N

∑
i=0

N

∑
j=0

fi jTi(x)Tj(t), (20)
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u0 ≈ µN(x, t) =
N

∑
i=0

N

∑
j=0

bi jTi(x)Tj(t), (21)

h(x, t)≈ hN(x, t) =
N

∑
i=0

N

∑
j=0

hi jTi(x)Tj(t), (22)

g(x, t)≈ gN(x, t) =
N

∑
i=0

N

∑
j=0

gi jTi(x)Tj(t), (23)

k(x, t,y,z)≈ kN(x, t,y,z) =
N

∑
i=0

N

∑
j=0

N

∑
l=0

N

∑
m=0

ki jlmTi(x)Tj(t)Tl(y)Tm(z). (24)

Having their respective matrix forms:

fN(x, t) = T T (x, t)F, (25)

µN(x, t) = T T (x, t)B, (26)

hN(x) = T T (x, t)H, (27)

gN(t) = T T (x, t)G, (28)

kN(x, t,y,z) = T T (x, t)KT (y,z). (29)

Where

F = [ f00 . . . f0N . . . fN0 . . . fNN ]
T , (30)

B = [b00 . . . b0N . . . bN0 . . . bNN ]
T , (31)

H = [h00 . . . h0N . . . hN0 . . . hNN ]
T , (32)

G = [g00 . . . g0N . . . gN0 . . . gNN ]
T . (33)

The components of (30)-(33) are derived from (13); K is an (N + 1)2 × (N + 1)2

matrix whose elements are obtained by:

ki jlm =

(
Ti j(x, t),(k(x, t,y,z),Tlm(y,z))w(y,z)

)
w(x,t)

(Ti j(x, t),Ti j(x, t))w(x,t) (Tlm(y,z),Tlm(y,z))w(y,z)
; i, j, l,m = 0,1, ...,N. (34)
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We now substitute (16), (17), (25) and (29) into (1) to obtain:

T T (x, t)A+T T (x, t)E +T T (x, t)K
(∫ 1

−1

∫ 1

−1
T T (y,z)T (y,z)dydz

)
A = T T (x, t)F.

(35)
(35) is simplified to obtain

A+E +KΩA = F, (36)

where

Ω =
∫ 1

−1

∫ 1

−1
T T (y,z)T (y,z)dydz. (37)

The conditions in (2) and the unknown function u(x, t) are expressed as polynomials
to establish a relation between the unknown function and its derivatives in terms of
the operational matrix of integration in (11)

u(x, t)+u(−1,−1)−u(−1, t)−u(x,−1) =
∫ x

−1

∫ t

−1
usrdsdr

=
∫ x

−1

∫ t

−1
T T (s,r)E dsdr. (38)

By the integral operational matrix of (11), the RHS of (38) becomes∫ x

−1

∫ t

−1
T T (s,r)E dsdr = QT E T T (x, t), (39)

substitute (16), (26), (27), (28) and (39) into (38) to obtain

T T (x, t)A+T T (x, t)B−T T (x, t)G−T T (x, t)H = QT E T T (x, t). (40)

Simplifying further we obtain

A+B−G−H = QT E, (41)

substituting (36) into (41) to obtain

A+B−G−H = QT (F −A−KΩA), (42)

(42) gives a system of linear algebraic equations and are solved by Maple18 to obtain
the unknown vector A. The results obtained are compared with the exact solutions of
the given 2D FIDEs.

4. Numerical examples

In this section, examples of 2D FIDE are given to illustrate the method described
in the previous sections.
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Example 1. Consider the Fredholm integro-differential equation:

u(x, t)+uxt(x, t)+
∫ 1

−1

∫ 1

−1
(x− yz)u(y,z)dydz = xt − sin(t)+1, (43)

where

u(−1,−1) = 1+ sin(1),

u(−1, t) =−t − sin(t)

u(x,−1) =−x+ sin(1).

(44)

The exact solution is u(x, t) = xt − sin(t) for x, t ∈ [−1,1].
Following the procedure described in section 4, the approximate solution for example
1 at N = 2 is given as:
u2(x, t) = 0.0012982147+0.09898364t −0.09148294t2 −0.29826123x−
0.099745312xt−0.121315t2x+0.799512434x2−0.4994562tx2+0.00042637184t2x2

The approximate solutions of the 2D integro-differential problems under consid-
eration for N = 2 as well as N = 4 and N = 6, using the integral operational matrix
of 2D Chebyshev polynomials are compared with their exact solutions u(x, t) and the
results are presented in Tables 1-3.
Figures 1-3 illustrate the exact solutions and the approximate solutions obtained by
CIOMM when N = 2. The absolute error function is given by Er(x, t) = |u(x, t)−
uN(x, t)|.
Comparisons are made between the approximate solution and the exact solution to
illustrate the validity of the method.

Table 1. Numerical results and Absolute Errors for example 1

(x, t) u(x, t) u2(x, t) Absolute Error Absolute Error Absolute Error
N = 2 N = 4 N = 6

(–1,–1) 1.017452406 2.181028788 0.11636E-1 7.1835E-4 3.4174E-7
(–0.8,–0.8) 1.357356091 1.548068246 1.9071E-1 3.5528E-4 7.2269E-7
(–0.6,–0.6) 0.924642473 1.019902141 9.5260E-2 3.1992E-5 6.3275E-9
(–0.4,–0.4) 0.549418342 0.590243757 4.0825E-2 7.1962E-6 6.0369E-9
(–0.2,–0.2) 0.238669331 0.252805362 1.4136E-2 3.7042E-6 2.4872E-10

(0,0) 0.000000000 0.001298215 1.2982E-3 3.4117E-6 4.1716E-10
(0.2,0.2) –0.158669331 –0.170567441 1.1898E-2 1.7850E-4 3.5296E-9
(0.4,0.4) –0.229418342 –0.269082373 3.9664E-2 9.9921E-4 7.2251E-8
(0.6,0.6) –0.204642473 –0.300538362 9.5896E-2 4.2166E-4 5.9573E-8
(0.8,0.8) –0.077356091 –0.271228202 1.9387E-1 3.1274E-4 1.2737E-7

(1,1) 0.982547594 –0.187445699 0.1170E-1 6.7352E-4 3.7935E-7

Example 2. Consider the Fredholm integro-differential equation:

u(x, t)+uxt(x, t)+
∫ 1

−1

∫ 1

−1
(x+ t)u(y,z)dydz = 2x+ x2t, (45)
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Fig. 1. 2D graph for exact solution and approximate solution of example 1

where

u(−1,−1) =−1,

u(−1, t) = t

u(x,−1) =−x2,

(46)

for x, t ∈ [−1,1] with exact solution u(x, t) = x2t.
Following the same procedure as in section 4, the approximate solution obtained is:
u2(x, t) = 0.0008794363+0.0004833378t +0.0001003148t2 +0.0001027962x+
0.0009424387xt +0.0002515847xt2 +0.0053774376x2 +0.8996554104x2t +
0.004857426t2x2

The approximate solution is compared with the exact solution in Table 2.

Table 2. Numerical results and Absolute Errors for example 2

(x, t) u(x, t) u2(x, t) Absolute Error Absolute Error Absolute Error
N = 2 N = 4 N = 6

(–1,–1) –1.000000000 –0.888336076 1.1166E-1 7.9271E-3 7.2922E-6
(–0.8,–0.8) –0.512000000 –0.454243329 5.7757E-2 3.7234E-4 4.7665E-7
(–0.6,–0.6) –0.216000000 –0.190911364 2.5089E-2 3.2174E-4 2.9221E-7
(–0.4,–0.4) –0.064000000 –0.055797484 8.2025E-3 6.2309E-5 1.6913E-7
(–0.2,–0.2) –0.008000000 –0.006172467 1.8275E-3 6.9794E-5 1.0205E-8

(0,0) 0.000000000 0.000879436 8.7943E-4 2.1584E-6 4.1383E-8
(0.2,0.2) 0.008000000 0.008460499 4.6050E-4 2.5352E-6 1.2535E-7
(0.4,0.4) 0.064000000 0.059859518 4.1405E-3 6.6147E-5 2.1476E-7
(0.6,0.6) 0.216000000 0.198551819 1.7448E-2 2.1958E-5 3.5853E-7
(0.8,0.8) 0.512000000 0.468199249 4.3801E-2 5.1761E-5 5.6086E-6

(1,1) 1.000000000 0.912650183 8.7350E-2 1.0018E-4 8.2785E-6

Example 3. Consider the Fredholm integro-differential equation:

Fig. 2. 2D graph for exact solution and approximate solution of example 2
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u(x, t)+uxt(x, t)+
∫ 1

−1

∫ 1

−1
(y2 − xzsin(t))u(y,z)dydz = x2 − xcos(t)+ sin(t)+

4
5
,

(47)
where

u(−1,−1) = 1+ cos(1),

u(−1, t) = 1+ cos(t),

u(x,−1) = x2 − xcos(1).

(48)

Following the same procedure we obtain the approximate solution:
u2(x, t) = 0.0098942423+0.09898364t −0.009148294t2 −0.799626123x−
0.499745312xt−0.121315xt2+0.999512434x2−0.04994562x2t+0.00042637184x2t2.
Table 3 shows the numerical comparisons with the exact solution u(x, t) = x2 −
xcos(t) for N = 2,4,6.

Table 3. Numerical results and Absolute Errors for example 3

(x, t) u(x, t) u2(x, t) Absolute Error Absolute Error Absolute Error
N = 2 N = 4 N = 6

(–1,–1) 1.999847695 2.616766388 6.1692E-1 1.5041E-3 5.3385E-6
(–0.8,–0.8) 1.439922019 1.745112800 3.0519E-1 3.1158E-3 2.1228E-7
(–0.6,–0.6) 0.959967102 1.081324360 1.2136E-1 6.5722E-4 4.1384E-7
(–0.4,–0.4) 0.559990252 0.591815334 3.1825E-2 4.1994E-5 5.3487E-7
(–0.2,–0.2) 0.239997319 0.242989936 2.9926E-3 7.1273E-5 3.8186E-8

(0,0) 0.000000000 0.001242328 1.2423E-3 5.0237E-6 7.9119E-9
(0.2,0.2) –0.159998782 –0.167043384 7.0446E-3 7.0001E-5 6.1743E-8
(0.4,0.4) –0.239990252 –0.295493145 5.5503E-2 8.1724E-5 1.3338E-8
(0.6,0.6) –0.239967102 –0.417742955 1.7778E-1 2.1162E-4 3.9156E-7
(0.8,0.8) –0.159922019 –0.567438867 4.0752E-1 4.7344E-4 4.3477E-6

(1,1) 0.000152395 –0.778236989 7.7809E-1 6.0185E-4 8.5104E-6

Fig. 3. 2D graph for exact solution and approximate solution of example 3

5. Conclusion

In this work, an operational matrix of integration of 2D Chebyshev polynomials
basis functions was constructed and used to convert 2D Fredholm integro-differential
problems to systems of algebraic equations without the use of collocation. A major
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advantage of the CIOMM is the establishment of a relationship between the unknown
function and its derivatives through an operational matrix of integration. Numerical
results and graphs show that the method yields good approximations even for a small
value of N for the problems considered. On the whole, it can be concluded that the
numerical scheme presented in this study is easy-to-implement and suitable for solv-
ing problems of similar type with a reasonable level of accuracy. The operational
matrices derived in this paper can be used to numerically solve problems involving
the fractional order left-sided mixed Riemann-Liouville integral operator.
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