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Abstract. The paper presents an analysis of effective elastic properties of plates with paral-
lel cracks using the finite element method (FEM) and the boundary element method 
(BEM). Rectangular plates with parallel or inclined cracks to the edges of plates were  
considered. Different distances between cracks and different angles of cracks were studied. 
The displacement and traction boundary conditions were applied and their influence  
on the accuracy of overall properties of cracked material was analysed. The results obtained 
by the FEM and the BEM were compared. 
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1. Introduction 

Cracks in materials are usually undesirable and cause a significant reduction  
in the durability of structures. Mechanics of fracture is becoming an increasingly 
important field of knowledge, because research related to the discontinuity of mate-
rials, which are cracks, allow for a significant extension of product life. Research in 
this field is mainly focused on cyclic loading systems, when cracks grow very fast. 
A plate that has cracks can be classified as a non-homogeneous material, because 
cracks, and especially those that occur in one direction, cause a significant deterio-
ration of the mechanical properties of such structures. One of the micromechanical 
methods is homogenization, which allows for the replacing properties of a hetero-
geneous material by effective properties of a homogeneous material. 

The effective elastic properties of cracked materials can be calculated using 
analytical or numerical methods. Nemat-Nasser and Hori [1] studied analytically 
an influence of crack density, the coefficient of friction and loading conditions  
on the effective bulk and shear modulus. The self-consistent method was used  
to take into account the interaction of cracks. Borovik [2] determined the effective 
elastic properties of a sintered material with pore channels treated as Y-shaped 
cracks, which created a periodic regular hexagonal network. A unit cell containing 
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halves of two adjacent cracks was modeled using the finite element method (FEM).  
The influence of different dimensions of crack branches on the effective Young 
modulus and the Poisson ratio was investigated. Sevostianov et al. [3] studied the 
influence of the microstructure of the sintered metal fibers on elastic properties. 
The analytical methods: the non-interaction approximation, the effective media  
approach, the differential approach and the effective field methods were used  
to derive explicit formulas for calculation of effective properties. The effect  
of the relative volume of pores, pore shapes and relative length of crack branches, 
which depend on the temperature of sintering, was analysed. Liu and Graham- 
-Brady [4] derived expressions for the compliance of periodically distributed wing-
cracks under uniaxial compressive load. An influence of the number of cracks, 
their size and orientation and the coefficient of friction was studied. The analytical 
results were compared with the FEM solutions. Dong and Lee [5] used  
the boundary integral equation method to analyse a doubly periodic array of cracks 
in an infinite isotropic plate subjected to remote tensile or shear loadings.  
The boundary integral equations depended on opening displacements of cracks. 
The effective elastic properties of the equivalent orthotropic material were  
calculated using a rectangular cell with a single crack. The influence of lengths  
of the cracks and dimensions of the cells was studied. Linkov and Koshelev [6] 
presented complex variable singular and hypersingular boundary integral equations 
for a doubly periodic system of grains, inclusions, holes and cracks. The method 
was used to analyse stress intensity factors and effective compliances of plates  
with straight, kinked and semi-circular cracks. Linkov [7] showed the application 
of the method for computation of stress intensity factors, trajectories of growing 
wings and compliances of doubly periodic inclined cracks. Various crack distribu-
tions were considered in the works. 

Fedelinski [8] analysed effective elastic properties for representative volume 
elements (RVE) with randomly distributed cracks by the boundary element method 
(BEM). The cracks having the same length, randomly distributed, parallel or ran-
domly oriented were considered. The influence of density of cracks on the effective 
Young modulus and the effective Poisson ratio was presented. Fedelinski [9] con-
sidered sintered metal fibers with voids and branched cracks grooving from their 
centers. The RVEs containing a large number of regularly distributed branched 
cracks were investigated. The influence of void shapes and dimensions of the crack 
branches on elastic properties were investigated. Fedelinski [10] analysed plates 
with cracks subjected to compressive loadings. The contact forces between crack 
surfaces were determined using the iterative procedure. An influence of orientation 
of cracks on overall elastic properties was studied. 

The original contribution of this work is an analysis of periodic RVEs with  
parallel cracks intersecting the boundary subjected to traction or displacement 
boundary conditions and RVEs with inclined cracks subjected to compression.  
The effective elastic properties computed for different boundary conditions using 
the FEM and the BEM are compared. 

The plates with cracks are analysed by the finite element method and the bound-
ary element method. The software Ansys 18.2 is used in the finite element analysis. 
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The dual boundary element method [11] and the computer code developed by  
Portela and Aliabadi [12] is applied to solve numerical examples. In order to take 
into account the contact of crack edges, the computer code was extended [10].  
In the FEM analysis, eight-node quadrilateral and in the BEM three-node line  
elements are applied. 

2. Plates with cracks parallel to the boundary 

Rectangular plates with uniformly distributed straight cracks parallel to the 
edges of the plate are considered. The periodic representative volume element 
(RVE) containing 17 internal cracks and 10 edge cracks is shown in Figure 1.  
The global coordinate system x1-x2 is located in the centre of the plate. The dimen-
sions of the RVE are 2w and 2h, in the x1 and x2 direction, respectively. The lengths 
of the cracks are 2a, the distance between the cracks in the x2 direction is b and  
the distance of the centres of the cracks in x1 direction is c. 
 

 
Fig. 1. Dimensions of the plate with cracks parallel to the boundary 

Five plates with a different distribution of cracks are studied. The relative  
distances between the cracks are given in Table 1. The dimensions of plates are  
related to the distances between cracks w = 2c and h = 3b. The material of plates  
is linear-elastic, isotropic and homogeneous. For all plates, the Poisson ratio of  
the material is v0 = 0.3 and the plates are in plane stress conditions. 

In the FEM analysis, 400 finite elements and in the BEM analysis 10 boundary 
elements are used along each crack edge. 

The displacements along the external boundaries of the RVE are used to calcu-
late average strains ij : 

 
1

( )
2ij i j j iu n u n d

A




   , (1) 

where A is the area of the RVE, Γ is its boundary, ui is the component of the dis-
placement, ni is the component of the unit normal outward vector to the boundary, 
and i,j = 1,2 for two-dimensional problems. 
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Table 1. Relative distances between cracks 

Plate’s number c/a b/a 

1 2.0 1.0 

2 1.5 1.0 

3 2.5 1.0 

4 2.0 0.5 

5 2.0 1.5 

 
The tractions along the external boundaries of the RVE are used to calculate  

average stresses ij : 

 
1

ij i jt x d
A




  , (2) 

where ti is the component of the traction. 

2.1. Traction boundary conditions 

The plate is simply supported along the vertical axis of symmetry allowing  
free extension, as shown in Figure 2. The plate is loaded by uniformly distributed 
vertical tractions p2 applied along the horizontal edges. 

The normalised displacements of the upper u2/u20 and right edge u1/u10 of the 
plate 1, computed by the FEM and the BEM, are shown in Figure 3. The displace-
ments are normalised with respect to the displacements of the edges of the plate 
without cracks u10 and u20 

. The normalised displacements are shown as functions of 
normalised coordinates x1/w and x2/h. 

The displacements of the upper edge computed by the BEM are larger than the 
FEM displacements, as shown in Figure 3a. The largest vertical displacements are 
for the boundary near the cracks. Very good agreement of horizontal displacements 
computed by the FEM and the BEM for the right edge can be seen in Figure 3b. 
The largest horizontal displacements are for the corners of the plate. 
 

 
Fig. 2. Traction boundary conditions for the plate with parallel cracks 
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Fig. 3. Normalised displacements of edges of the plate 1: a) upper edge, b) right edge 

The average strains are computed using Eq. (1). They are used to calculate the 
effective Young modulus E2 and the Poisson ration ν12 

. The normalised effective 
Young modulus E2/E0 and the effective Poisson coefficient ν12/ν0 of plates are 
shown in Table 2, where E0 and ν0 are the Young modulus and the Poisson ratio of 
the continuous material in plane stress conditions, respectively. The relative differ-
ences of the properties obtained by two methods with respect to the properties of 
the continuous material [E2(FEM)-E2(BEM)]/E0 and [ν12(FEM)-ν12(BEM)]/ν0 are 
also shown in Table 2. 

Table 2. Effective properties of the plates for the traction boundary conditions 

Plate’s number Properties FEM BEM Difference [%] 

1 
E2/E0 0.0969 0.0935 0.34 

ν12/ν0 0.0967 0.0892 0.75 

2 
E2/E0 0.0289 0.0281 0.08 

ν12/ν0 0.0285 0.0182 1.03 

3 
E2/E0 0.2194 0.2152 0.42 

ν12/ν0 0.2746 0.2611 1.35 

4 
E2/E0 0.0666 0.0629 0.37 

ν12/ν0 0.0659 0.0573 0.86 

5 
E2/E0 0.1031 0.1006 0.25 

ν12/ν0 0.1028 0.0914 1.14 
 

a) 

b) 
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One can notice a significant influence of crack spacing on values of effective 
Young moduli or Poisson ratios. The most stiffest plate is plate 3 for which c/a 
value is the largest. The separation of cracks in the x1 direction results in the form-
ing of areas of material without discontinuities. They significantly increase  
the stiffness of the material. On the other hand, the plate with the smallest values of 
the effective Young’s modulus and effective Poisson’s ratio is the plate 2, in which 
the cracks overlap each other in the x1 direction. This causes significant displace-
ment values on the outer edges of the plate, which decreased the Young modulus. 
The relative Poisson ratios are smaller than the relative Young moduli except  
for the stiffest plate 3. 

The effective elastic properties, obtained by the FEM are larger than the proper-
ties computed by the BEM for each plate. Good agreement of results can be seen 
for the Young moduli, where the relative difference is 0.08-0.42%. The Poisson  
ratio shows less consistent results for the FEM and the BEM. The relative difference 
is 0.75-1.35%. The accuracy of the Young modulus is better than the Poisson ratio 
because displacements of two edges are used to compute the Young modulus  
and displacements of all edges to compute the Poisson ratio. The discrepancies  
in the results are also affected by the differences in the structure discretization. 

2.2. Displacement boundary conditions 

The same RVEs are analysed using the prescribed displacement boundary con-
ditions on all edges of the plates. Obtaining effective material properties is a much 
more complex process than for plates with traction boundary conditions. 

In order to obtain effective properties, two types of boundary conditions shown 
in Figure 4 are applied. Two edges of the plates are supported and can move only 
in the directions of the edges, and on the remaining edges uniform displacements 
are given. 
 
a) b) 

     
Fig. 4. Displacement boundary conditions for the plate with parallel cracks: 

a) applied displacements u1, b) applied displacements u2 
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In this method, the averaged stresses are computed using Eq. (2). For the applied 
displacements u1 in the x1 direction (Fig. 4a), the relations between average strains 
and stresses is expressed by the following equations: 

 12
1 1 2

1 2

1a a a

E E


    , (3) 

 21
1 2
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For the applied displacements u2 in the x2 direction (Fig. 4b) the relations  
between average strains and stresses are expressed by the following equations: 
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where the superscript a denotes stresses for the first type and the superscript b 
stresses for the second type of boundary conditions. 

The equations (3)-(6) are used to calculate effective properties of the material: 
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The normalised tractions along the upper p2/p20 and the right edge p1/p10 of the 
plate 1 computed by the FEM and the BEM are shown in Figure 5. The tractions 
are normalised with respect to the tractions for the plate without cracks p10 and p20 

. 
The tractions computed by the FEM are slightly larger than the BEM tractions.  
The smallest tractions are along the boundary near the cracks. 

The normalised effective Young modulus E2/E0 and the effective Poisson coef-
ficient ν12/ν0 of plates are shown in Table 3. The relative differences are computed 
in the same way as for the traction boundary conditions. The Young modulus E1 
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and the Poisson ratio v21 are not given because they have exactly the same values  
as for the continuous material, namely E1 = E0 and ν21 = ν0 

. 

Table 3. Effective properties of the plates for the displacement boundary conditions 

Plate’s number Properties FEM BEM Difference [%] 

1 
E2/E0 0.1099 0.1044 0.55 

ν12/v0 0.1065 0.0793 2.72 

2 
E2/E0 0.0322 0.0327 –0.05 

ν12/v0 0.0373 0.0267 1.06 

3 
E2/E0 0.2728 0.2808 –0.80 

ν12/v0 0.2513 0.2817 –3.04 

4 
E2/E0 0.0497 0.0552 –0.55 

ν12/v0 0.0494 0.0556 –0.62 

5 
E2/E0 0.1641 0.1673 –0.32 

ν12/v0 0.0750 0.1611 –8.61 

 
Good agreement of results can be seen for the Young moduli, where the abso-

lute value of the relative difference is 0.05-0.80%. The Poisson ratio shows less 
consistent results for the FEM and the BEM. The relative difference is 0.62-8.61%. 
The Young modulus computed using the displacement boundary conditions is  
larger than the modulus computed using the traction boundary conditions except 
for the most flexible plate 4. 
 

 

 
Fig. 5. Normalised tractions along edges of the plate 1: a) upper edge, b) right edge 

a) 

b) 
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3. Plates with parallel cracks inclined to the boundary 

Square plates, shown in Figure 6, having the dimensions 2w = 2h with 21 paral-
lel cracks inclined at the angle α with respect to the axis x1 are analysed [10].  
The ratio of the crack length to the edge length is a/w = 1/8. The distances between 
the cracks are b = c = 2√2a. Three different orientations of the cracks are consid-
ered, namely α = 30°, 45° or 60°. The plates are in plane strain conditions and the 
Poisson ratio of the material is ν = 0.3. The plates are subjected to the horizontal 
compressive tractions p1. Along each edge of the crack, 10 boundary elements  
or 80 finite elements are used. 
 

 
Fig. 6. Plate with inclined parallel cracks 

The plates under compression are analysed by neglecting or by taking into  
account the contact of crack edges. Contact features in the Ansys software are  
determined as frictionless, surface to surface with the normal Lagrange formula. 
These settings meant that penetration and opening are close to zero. The normalised 
effective Young modulus E1/E0 and the effective Poisson coefficient ν21/ν0 of plates 
are shown in Table 4, where E0 and ν0 are the Young modulus and the Poisson ratio 
of the continuous material in plane strain conditions, respectively. The relative  
differences are computed as for the traction boundary conditions in the first numeri- 
cal example. Good agreement of the results can be seen for the Young moduli, where 
the absolute value of relative difference is 0.2-1.3%. The Poisson ratio shows  
less consistent results for the FEM and the BEM. The absolute value of relative  
difference is 0.3-1.8%. 

It can also be seen that for the angles 30° and 60° the effective Young moduli 
and the Poisson ratios, computed with contact, show very high similarity. 

In this example cracks do not intersect the boundaries of the RVEs and varia-
tions of displacements along the edges are much smaller than in the first example. 
Therefore the accuracy of displacements, average strains and effective properties  
is better. 
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Table 4. Effective properties of the plates with inclined parallel cracks 

Angle α 30° 45° 60° 

Contact no yes no yes no yes 

E1/E0 
FEM 0.859 0.895 0.767 0.877 0.666 0.895 

BEM 0.866 0.900 0.763 0.875 0.679 0.899 

Difference [%] –0.7 –0.5 0.4 0.2 –1.3 –0.4 

v21/v0 
FEM 0.828 1.140 0.723 1.163 0.641 1.140 

BEM 0.840 1.130 0.719 1.166 0.659 1.131 

Difference [%] –1.2 1.0 0.4 –0.3 –1.8 0.9 

4. Conclusions 

Representative volume elements with parallel or inclined cracks to the edges of 
the element were considered in the paper. The influence of distance between 
cracks, their orientation and the influence of crack edge contact on effective 
Young's moduli and Poisson's ratios were investigated. Stress or displacement 
boundary conditions were given to determine effective properties. The materials 
were analysed by the finite and boundary element methods. Better consistency of 
results for Young’s moduli than for Poisson's coefficients was obtained. It is  
particularly difficult to obtain accurate results for periodic representative volume 
elements in which cracks cut the edges of the element due to large changes in  
displacements and tractions on the edges of the element. 

The largest Young’s moduli were obtained for plates in which there were areas 
of continuous load-bearing material between cracks. Materials with cracks have 
greater stiffness in compression than in tension. 
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