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Abstract. In the present work, a solution to the problem of viscous flow in a rectangular
region with two moving parallel walls is obtained by using a hybrid finite volume scheme.
The discretized governing equations are solved iteratively, and thereby the flow variables
are computed numerically. The results for velocity and pressure in horizontal and vertical
directions through the centre of a rectangular region are elucidated. The nature of velocity
profiles and pressure for different Reynolds numbers in the horizontal and vertical directions
through the geometric centre was analyzed with the help of pictorial representations. The
present results are compared with the available benchmark results and we have found that
they are not in disagreement.
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1. Introduction

The mathematical model for analysing the viscous flow in a rectangular region
with two moving parallel walls occurs in industrial applications, such as chemical
etching or film coating industries. There have been numerous investigations carried
out over the last decade regarding viscous flow in a square cavity. However, we have
discovered few studies on a viscous flow in a rectangular cavity with a moving top
wall.

A time-marching numerical method for computation of correct velocity and pres-
sure fields of a general fluid flow problem was studied by Patankar and Spalding [1].
A coupled strongly implicit multigrid method based on the stream function-vorticity
formulation was suggested by Ghia et al. [2] for finding the solutions of a two-
dimensional incompressible flow in a square cavity. A capable solution strategy
for solution of steady incompressible flow using the automatic adaptive refinement
method was investigated by Thompso and Ferziger [3]. Bruneau and Jouron [4] have
investigated an efficient scheme for solving steady incompressible Navier-Stokes
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equations with the help of the implicit relaxation technique coupled using a simpli-
fied FMG-FAS algorithm. Liakos [5] proposed a two level method and its algorithm
for the solution of nonlinear system of equations for viscous flow. The high order
accurate compact finite volume method for steady and unsteady flows was investi-
gated by Piller and Stalio [6]. A compact fourth-order finite volume method for the
solutions of Navier-Stokes equations on a staggered grid was proposed by Hokpunna
and Manhart [7].

From the review of literature and to the best of our knowledge, we observed that,
flow in a rectangular region with two moving parallel walls has not yet been attempted
by the researchers using hybrid finite volume scheme. Therefore, our goal here is to
fill this gap. Hence we are motivated to perform this current study.

The motive of this current study is to find the solution of viscous flow in a rect-
angular region with two moving parallel walls using a hybrid scheme [8]. The quasi-
linear partial differential equations are discretized using this scheme. The semi-
implicit method for pressure linked equations is an algorithm that is based on an
iterative method of solution is used in this current study. Consequently, flow vari-
ables are computed numerically and explicated in the horizontal and vertical direc-
tions through the centre of the region. Code verification of the present problem with
the benchmark solutions is carried out.

2. Mathematical formulation

2.1. Configuration description

The configuration of flow in a rectangular region ABCD of length L and breadth
H with suitable boundary conditions is presented in Figure 1. Since we have as-
sumed that the boundaries AD and BC are free boundary walls, slip wall boundary
conditions for velocity # = 10 and —10 are defined on the boundary walls AD and
BC respectively [9]. Consequently, the flow is defined to be normal to the boundary

walls DC and AB. Hence, the normal velocity a—v defined to be zero on the boundary
X

walls DC and AB. At all corner points of the region, velocity components (u,v) and
pressure P assumed to be zero, i.e., it must be noted here that, excluding the corner
points, the boundary conditions for velocity components on the boundary walls of
the region ABCD are defined as mentioned above.

2.2. Governing equations

The present model constitutes a 2-D steady, incompressible, viscous flow in a two
moving parallel plates of a rectangular region [10]. The governing equations to this
model in dimensional form are given as follows:

aU a9V

Continuit tion: —+—=—==0 1
ontinuity equation X + )G , (D
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Fig. 1. Design of the problem
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where U, V, p, p and v are the velocity components along the X and Y -axis, pressure,

density and kinematic viscosity respectively. We define the following dimensionless
U.v) p v

variables:
X.,Y
(,)7 (M,V): ’ 7P_ ,Pl”:*.
L uo puo (04
The above equations (1)-(3) are subject to the boundary conditions [11] in the
dimensional form:

U 10 22U J*U
d ( ) )

(xvy) =

Vv A%

onAB: at X=0, U=0, X =0; onDC: at X=L, U=0, X =0;
onBC: at Y=0, U=—10ug, V=0; onAD: at Y =H, U =10uy, V =0.
4)
The dimensionless forms of the governing equations (1)-(3) reduce to
d d
Continuity equation: au + v 0, ®)
dx dy

X-momentum equation: ua +v 8y o + Re \ 92 + a—yz
momentum equation ov +v ov_ 9P + L (%% + o @)
- : u —— — — [
Y q ox 'y dy 02 92
where the non-dimensionless variables u, v, P and Re are the velocity components
along x and y-axis, pressure and Reynolds number respectively. The above equations
(5)-(7) are subject to the following boundary conditions in dimensionless form:
d d
on AB: at x=0, u=0, Y =0; onDC: at x=2, u=0, —v:o;
ox dx

onBC: at y=0, u=-10, v=0; onAD: aty=1, u=10, v=0.

0 0 IP 1 [9? 22
u u < u u) ©)
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3. Numerical method

3.1. Discretization technique

The governing equations (5)-(7) are discretized with the help of a hybrid scheme
under finite volume set up and obtained the solutions of the flow variables u, v and P.
The configuration of the staggered grid (Fig. 2) [12, p. 194-196] which is given below
helps us to understand and obtain solutions in an iterative manner from descretized
equations.

I —i, Nla ry_i

4 i 4 1
| I (CAVERY) T sy |

—— W (-1, Iy Wi, J) A4S TE L ) Bl (H1,))
uicell

—
—
ary
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Fig. 2. Staggered grid

3.2. Discretization of governing equations

The continuity equation (5) is discretized with the help of scalar control volume
as prescribed in Figure 3 [12, p. 202]. The discretized continuity equation at location
(1,J) of the scalar control volume is given by

Fo—F,+F—F=0 (9)

Fig. 3. Scalar control volume (Continuity equation)
The x-momentum equation (6) is discretized on u-control volume as given in

Figure 4. The discretized x-momentum equation at location (i,J) is given by [12,
p. 197-199]

aiguig =Y anpitny + (P-17— Pr7)Ais (10)
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where A; ; is the cell face areas of u-control volume. E, W, N, S neighbors involved
in the summation are Zanbunb are (i+1,J), i—1,J), (i,J+ 1) and (i,J — 1). Their
locations and prevailing velocities are shown in Figure 4.
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Fig. 4. u-control volume

In a hybrid differencing scheme [12, p. 168-169], the coefficients under summa-
tion are as follows:

aig=ai1jg+tai1g+taij+aij1+AF (11)
where
Fr g Froig
aiv1,y =max|—Fj,(Dry— > ),0),ai-1y = max[F_y 4,(D-1 5+ > ),0],

F.~. I .
ajgs1 =max| —F ji1,(Djjs1 — l';r ),0],aiy—1 = max[F; j,(D;;j+ —=2),0],

2
AF = (F,—F,)+ (F,— F) = (Fg— Fr-1g) + (Fi j1 — F )

(12)

where the coefficients contain the combinations of convective flux per unit mass F'
and diffusive conductance D in u-control volume at the cell faces. The values of F
and D for each of the interfaces of the u-control volume are given as follows:

Fiig+Fy  uiv1 A1) +uijAig

F, = FI,J = 2 2
Fy=F_1y= Fiy +2Fi—1,J _ Mi,JAiJ-i-b;i—l,JAi—l,J
B C Fjat e viaAnje v A-a
F=Fjn= > = >
Fi+F_1; vijArj+tvieijAi-
F=F,="" . j _ Vi . JAI-1,j
ALy 1 (A1 +Aiy A1 1 [Aig+Ai—1y
D = D pr— 7 pr— 7 2 D prm— D _ = 2 = ’ ?
¢~ 7T ReAx ReAx( 2 T P T ReAx T ReAx 2
Aijt+1 I [(Apjr1+Ar1 Aij 1 (A j+A
D :D . = - = 2 2 D :D ;= - = - 2
" BT ReAy ReAy( 2 e "/ ReAy  ReAy 2
(13)

Similarly, the y-momentum equation (7) is discretized on v-control volume and
is given in Figure 5. The discretized y-momentum equation at (I, j) is given by




22 V. Ambethkar, L.R. Basumatary

[12, p. 199-200]
ar vy, = Zanbvnb +(Pryj—1—Pry)ArLj (14)

where the neighbors E, W, N and S, involved in the summation Zanbvnb, are

U+1,)),d—1,j),{,j+1)and (I, j— 1). Their locations and prevailing velocities
are shown in Figure 5.

Ax

Fig. 5. v-control volume

In the hybrid differencing scheme [12, p. 168-169], the coefficients under sum-
mation are defined as follows [13]:

ajj=apy1,jta—1j+apj1+ap 1 +AF (15)
where
Firj F;
ars1,j = max| — Fip1 j,(Diy1,j— l; ’J)70]7611_17j:max[E-J?(Di,jJr%)?O],
Fry Frj
ar,j+1 =max| —Fpy,(Dry— > ),0],ar,j—1 = max[Fj_y,(Dr -1 + 5 ),0],

AF = (F,—F,)+ (F,— F) = (F1,j— F—1,j) + (Fig — Fry-1)
(16)

As per the notations used in v-control volume, the values of F and D, for each of
the faces e, w, n and s reduce to

Fg+Fiig-1 w1 jAinig Huicig-14iv10-1
F,=Fy ;= =

2 2
F; Fj_ i JA; i J_14; j—
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Finally the pressure correction equation is given by [12, p. 202]
argPry = ar1gPryy g+ a1 gPy gt ar Py tag Py +b,  (18)

where
arg=ar1gtaj-1j+ayj1+arj-1

and the coefficients are defined as follows:

a1,y = (dA)ix1,4, aj—15 = (dA);y,
arj+1 = (dA)rj+1, arg—1 = (dA)r;,
A g Arj (19)

dig=—=, dj=
aij ar,j

by = A)iy — A1+ (VA — (VA)

In the source term b , the continuity imbalance is seen due to utilizing the guessed
velocity fields.

3.3. Numerical computations

Our target is to compute numerical solutions of the flow variables. Since we
hereby adopt the well-known algorithm of the semi implicit method for pressure
linked equations proposed by Patankar [14]. The steps involved in this algorithm
are summarised as follows:

Semi implicit method for pressure linked equations algorithm:

The semi implicit method for a pressure linked equations algorithm for comput-
ing the numerical solutions of fluid flow consists of the following sequence of steps
[12, p. 200-204]:

Step 1 Start with guess velocities u*, v* and pressure fields P*.

Step 2 Calculate the coefficients in the momentum equations, solve discretized mo-
mentum equations.

Step 3 Calculate the coefficients of the pressure equation, solve pressure correction
equation.

Step 4 Correct pressure and velocities:

Pry=P;+Py,
wig =ui;+dig(P_y;—Pry), (20)
vig=vi;+dij (P 1 =P )

Step 5 Replace the previous intermediate values of pressure and velocity (u*,v*, P*)

with the corrected values (u,v,P), return to Step 2, and repeat this process
until the solution converges.
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4. Analysis of results

In this study, we explore steady, incompressible viscous flow in a rectangular re-
gion with two parallel moving wall boundaries using a hybrid scheme under finite
volume setup. The significance of the present problem is that since we have consid-
ered two free parallel boundary walls (top and bottom) of the region, as a result of
this, the flow is defined as normal to the boundary walls (left and right). Our target
in this study is to explore the nature of the flow due to laminar and turbulence for
low, moderate and high Reynolds numbers in all regions such as to the left, right, top
and bottom of the centre of the rectangular region. Using the algorithm mentioned in
Section 3.3 for the numerical computations, we obtained the numerical solutions of
u and v-velocities which lie between the boundary conditions defined on the top and
bottom walls.

The nature of velocity profiles in x and y directions in the rectangular region
for different ranges of Reynolds numbers are illuminated in Figure 6. The solutions
of u-velocity versus different points of y in 0 <y <1 are illustrated in Figure 6a.
It depicts the nature of the velocity profiles in a vertical direction (u-velocity profiles)
from the bottom to the top wall through the centre of the region. We inferred that, as
the Reynolds number increases, the velocity increases uniformly in this region from
the bottom wall to the centre. The presence of velocity profiles in this manner is
due to the hypothesis that a velocity of —10 m/s is applied on the bottom wall and as
a result of this, the flow remains laminar in this range of Reynolds numbers 50 to
400. Whereas for Re = 5000, we examine the oscillatory behaviour of the velocity
profiles while moving from the bottom to top wall. This nature of flow is due to the
fact that the flow remains turbulent for a high Re number.

Now in the region from the center up to the top wall, for any Re in the range of 50
to 400, we discover that velocity profile decreases constantly owing to the velocity
of —10 m/s applied on BC is dissipated while reaching the top wall AD from the
centre. whereas for Re = 5000, we examine the oscillatory behaviour of the velocity
profiles while moving from the centre to the top wall. Furthermore, we also infer that
at the top wall, the velocity decreases by increasing the Reynolds number from 50 to
5000. The reason for this is similar to what we have explained above for the bottom
wall. Furthermore, it is concluded that at the bottom wall, the velocity increases by
increasing the Reynolds number from 50 to 5000.

The solutions of v-velocity versus different points of x in 0 < x < 2 are illustrated
in Figure 6b. The nature of the velocity profiles along the horizontal line from the left
to the right wall through the center of the region is illuminated with the aid of Figure
6b. It depicts that in the region from the left wall AB to the center, for any Reynolds
number (Re) in the range of 50 to 400, we discover that, the velocity profiles de-
crease constantly as we are proceeding towards the centre. Furthermore, especially
for lower Reynolds numbers Re = 50, 100, we have obtained higher numerical values
of v-velocity. However, these numerical values are found to be within the allowed
limits and hence they are realistic. Hence, the numerical values of v-velocity finally
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Fig. 6. (a) u-velocity along the vertical line, (b) v-velocity along the horizontal line through geometric
centre of the rectangular enclosure for Re = 50, 100,400,5000

settles in the realistic limit for a high Reynolds number range rather than the low
and the moderate ranges. Furthermore, we can conclude that the numerical values of
v-velocity for any Reynolds number (Re) greater than 5000 (7500, 10000,20000, ...)
are almost same as those for Re = 5000. Now, in the region from the geometric
centre until the right wall DC, we have inferred that for any Reynolds number (Re),
in the range from 50 to 400, the v-velocity increases constantly. From this, we can
conclude that, by increasing the Reynolds number from 50 to 5000, the v-velocity
increases uniformly from the geometric center towards the right wall. This behaviour
is due to the fact that a velocity of —10 m/s applied on bottom wall BC.

P P
— x=0.1667 — y=0083
18 — x=08% 2 y
= 04167
16 — x=13889 ‘ =064
14 X=19444 y=09722

R ‘ R
0 1000 2000 3000 4000 5000 0 1000 200 000 400 5000
(@ (b

Fig. 7. Pressure variation for different Reynolds number Re at: a) y =0.5,b) x=1.0

We have used numerical solutions of pressure at different grid points in draw-
ing Figures 7, which illuminates the variation of pressure profiles along the hori-
zontal and the vertical line through the centre of the rectangular region for different
Reynolds numbers in the range of low, moderate and high. Figure 7a depicts that, in
the range of low and moderate i.e., when Re is increasing from 50 to 400, the pres-
sure decreases uniformly along the horizontal line of the region through the center.
However, from the Reynolds number 400 onwards until 5000 and above, the pres-
sure increases uniformly at all grid points starting near the left wall until the right
wall through the centre. The variation of pressure at different points along the verti-
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cal line through the center of the region is illuminated with the help of Figure 7b. In
the range of low and moderate when Re is increasing from 50 to 400, the pressure
decreases uniformly in the direction from the left wall to the right wall of the rectan-
gular enclosure through the geometric center. However, from the Reynolds number
400 onwards until 5000 and above, the pressure increases uniformly at all grid points
along the vertical line through the geometric centre.

Re=0.0001
Re=0.1

(@) (b)
Fig. 8. u-velocity profiles with Reynolds numbers 0.1 (a) and 0.0001 (b)

By considering the importance of the flow behaviour at very low Reynolds num-
bers Re << 1, we have computed the numerical solutions of u-velocity at very low
Reynolds numbers Re = 0.1 and 0.0001 and pressure at 0.0001. These Reynolds num-
bers correspond to the motion of the tiliate and bacterium in low Reynolds number
flow. With the help of these solutions, we have illustrated the velocity profiles along
the vertical and pressure profiles along the horizontal direction through the geometric
center of the flow.

We inferred from Figures 8a and 8b that for both very low Reynolds numbers
0.1 and 0.0001, the u-velocity increases uniformly in the region from the bottom
wall to the center. Now in the region from the center till the top wall, for both the
low Reynolds numbers mentioned here, we discovered that the u-velocity profiles
increase uniformly. The reason for this behaviour of the flow is due to the fact that
flow remains mostly laminar at very low Reynolds numbers and the flow does not
oscillates.

x=0.0556
x=0.5000
x=0.9444
x=1.5000
x=1.9444

800000 [
600000 [
400000

200000l ,,”.»»»:;;;;:::m«ff:::::::::

" " " L Re
0.00004 0.00006 0.00008 0.00010

Fig. 9. Pressure profiles for Re << 1(Re = 0.0001)
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Since it is very interesting to know pressure profiles in the case of very low
Reynolds number flow (Re << 1), we have computed numerical solutions of pres-
sure at different grid points along the horizontal line through the geometric center of
the rectangular region in the range of Re = 0 to 0.0001. Since motion of bacterium
in fluid illustrates the flow at low Reynolds numbers, we have considered an ideal
value of Re = 0.0001 in these computations of pressure at different grid points.
The behaviour of pressure profiles at five different grid points is depicted in Fig-
ure 9. We have illustrated these pressure profiles for very low Reynolds numbers in
the range of Re = 0 to 0.0001 at five different grid points of x which are shown in
this figure and the value of y is at 0.5. From these pressure profiles, we can conclude
that as the Reynolds number increases, the pressure decreases uniformly as we move
from the left wall to the right wall through the geometric center of the region.

5. Code validation

The velocity profiles along x and y-directions for the present problem are com-
puted at the mid-point (0.5,0.5) of the domain using a code written in C. These
solutions are computed for Reynolds numbers Re = 100, 400, 1000, 3200, 5000,
7500, 10000 and are compared with benchmark solutions given by Ghia et al. [2].
The results are found to be in good agreement.

u v

. . . . L Re
2000 4000 6000 8000 10000 035
-0.05

* Current code (FVM) 030
-040 —Ghiactal. 2] ‘ * Current code (FVM)
025 — Ghiaetal.[2]

020)
015
010

005

Re
2000 4000 6000 8000 10000
(2) (b)

Fig. 10. Code validation of u (a) and v-velocity (b) with benchmark results

6. Conclusions

We explore the steady, incompressible viscous flow in a rectangular region with
two parallel moving wall boundaries using the hybrid scheme under finite volume
setup. Main conclusions of this study are summarized as follows:

o As the Reynolds number increases in the range of 50 to 400, the velocity

increases uniformly in the region from the bottom wall to the centre because
a velocity of —10 m/s is applied on the bottom wall BC and flow remains lami-
nar for low Reynolds numbers as well.
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In the region from the center to the top wall, increasing the Reynolds number
(Re) from 50 to 5000, the u-velocity decreases uniformly because a velocity
of —10 m/s applied on BC has dissipated from the center onwards until the
top wall AD. Furthermore, increasing the Reynolds number from 50 to 5000,
the u-velocity decreases at the top wall. However, it is more at the bottom wall
due to the region given above.

In the region from the left wall AB until the center, for any Reynolds number
(Re) in the range of 50 to 400, the v-velocity decreases uniformly as we are
proceeding towards the centre of the region. In the region from the centre until
the right wall DC, with increasing Reynolds number from 50 to 5000, the
v-velocity increases uniformly.

In the range of low and moderate Reynolds numbers ranging from 50 to 400,
the pressure decreases uniformly along the horizontal line of the rectangular
region through the centre. However, from Re = 400 onwards until 5000 and
above, the pressure increases uniformly.

It can be concluded that for low and moderate Reynolds numbers ranging from
50 to 400, the pressure decreases uniformly along the vertical line through the
center. However, when Re = 400 onwards until 5000 and above, the pressure
increases uniformly.

The numerical solutions for u and v-velocity are computed at the mid-point
(0.5,0.5) for Reynolds numbers Re = 100, 400, .....10000 and are compared
with benchmark solutions and are found to be in good agreement.

For both very low Reynolds numbers 0.1 and 0.0001, the u-velocity increases
uniformly in the region from the bottom wall to the center and then from center
to the top wall of the domain and no oscillatory type of flow is observed in
the domain.

We can conclude that as the Reynolds number increases, the pressure decreases
uniformly as we move from the left wall to the right wall through the geometric
center of the region.
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Nomenclature
Ax, Ay grid spacing along x and y-axis
u, v* guess velocities along horizontal and vertical components
P*, P guess pressure and presure correction
F, F, F, F; convective flux per unit mass at east, west, north and south faces

respectively

D., D, D,, Dy diffusivity conductance at east, west, north and south faces

respectively

Subscripts

nb  neighbouring coordinates

i, j index in tensor form

e finite volume face at P and E

w finite volume face at P and W
n finite volume face at P and N
s finite volume face at P and S
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