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Abstract. The homogeneous soft tissue domain subjected to an external heat source is con-

sidered. Thermal processes in this domain are described using the well known Pennes equa-

tion and next the Cattaneo-Vernotte one. Within recent years the prevailing view is that the 

Cattaneo-Vernotte equation better describes the thermal processes proceeding in the bio-

logical tissue (it results from the specific internal tissue structure). Appearing in this equa-

tion the delay time of heat flux with respect to the temperature gradient (τq) is of the order 

of several seconds and the different values of τq are taken into account. At the stage of nu-

merical modeling the finite difference method is used. In the final part of the paper, the ex-

amples of computations are shown. 
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1. Introduction 

The heat transfer processes proceeding in the domain of soft tissue are the most 

commonly described by the well known Pennes equation [1-3]. It is the Fourier - 

- type PDE containing the additional internal heat sources resulting from the blood 

perfusion and metabolism. The first is proportional to the local differences between 

blood and tissue temperatures and the mathematical form of the perfusion heat 

source results from the assumption that the tissue domain is supplied by a large 

number of blood capillaries (the soft tissue models). The metabolic heat source 

can be treated as the temperature dependent function (e.g. [4]) or a constant value 

(e.g. [5]).  

As is generally known, the Fourier-type equation has been formulated under 

the assumption of the infinite velocity of thermal wave propagation. In the case 

of materials with a specific internal structure (e.g. biological tissue) this equation 
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should be modified. To take into account the delay effect of the local and tempo-

rary heat flux with respect to the temperature gradient, the so-called relaxation time 

τq is introduced, and then the heat transfer process is described by the Cattaneo- 

-Vernotte equation (CVE) [6, 7] which belongs to the group of hyperbolic PDE. 

According to the literature data, the relaxation time for the processed meat is 
the order of seconds (2÷5 s) [7]. Recently the thermal processes in the domain of 

soft tissue are also described using the dual phase lag equation in which two delay 

times are taken into account (the relaxation time τq and a thermalization time 

τT - e.g. [8, 9]). This approach is very interesting, but so far, the numerical data 

concerning the delay times are rather precarious. 

The interesting thing from a practical point of view is the comparison of 

the results obtained using both models and also the analysis of the impact of relaxa-

tion time changes on the CVE solution. 

At the stage of numerical computations, the authorial variant of the finite differ-

ence method (FDM) has been used [10]. The 1D problem has been considered. 

Such a solution is sufficient for the formulation of conclusions connected with 

the subject of this study. In the final part of the paper the results of numerical 

simulations and also the concluding remarks are formulated. 

2. The governing equations 

The 1D Pennes equation for the domain oriented in the Cartesian co-ordinate 

system can be written in the following form 

 
( , ) ( , )

( ) λ ( ) ( , )
T x t T x t

c T T Q x t
t x x

 ∂ ∂ ∂
= + 

∂ ∂ ∂ 
 (1) 

where c is the volumetric specific heat of tissue, λ is the thermal conductivity, Q is 

the capacity of internal heat sources, T is the temperature, x, t denote the geometri-

cal co-ordinate and time. 

The internal heat source is a sum of two components 

 ( ) ( ), ,

B B B met
Q x t G c T T x t Q = − +   (2) 

where GB [m
3

blood/m
3

tissue/s] is the perfusion coefficient, cB is the volumetric specific 

heat of blood, TB is the arterial blood temperature, and Qmet is the metabolic 

heat source. 

The equation (1) is supplemented by the appropriate boundary and initial condi-

tions. In particular, for x = 0 the value of external heat flux is given (the Neumann 

boundary condition), meaning 
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while for x = G (a thickness of domain) the no-flux condition (qb = 0) is assumed. 

Additionally, for t = 0 

 
0

( ,0)T x T=  (4) 

The Cattaneo-Vernotte equation is more complicated, namely 

 ( )
2

2
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where the relaxation time is denoted by τq. Taking into account the mathematical 

form of internal heat source (2), one has 
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It can be seen that contrary to the parabolic Pennes equation (1), the equation 

(5) is of the hyperbolic type. As previously expressed, the equation (6) is supple-

mented by the appropriate boundary and initial conditions. It should be pointed out 

that the form of typical boundary conditions in the case of CVE is somewhat dif-

ferent than those that are classic. In particular, the Neumann condition takes a form 

 
( , ) ( , )

( , ) τ λ
q

q x t T x t
q x t

t x

∂ ∂
+ = −

∂ ∂
 (7) 

One can see, that for the constant value of q(x,t) = qb the condition (7) takes 

a classical form. The initial conditions concern the initial tissue temperature (4) and 

initial heating rate 
0

( , ) / | 0
t

T x t t
=

∂ ∂ = . 

3. The numerical solution 

The numerical solution of the problem discussed can be obtained using the ex-

plicit scheme of the FDM. Let us consider the differential mesh being the Cartesian 

product 
h t

Ω ⊗Ω , where 
0 1 1 1

:{0 ... ... }
h i i i n

x x x x x x G
− +

Ω = < < < < < < < =  and 
0 1 2 1

:{0 ... ... }
f f f F

t
t t t t t t

− −

Ω = < < < < < < < < ∞ . Both the geometric h and time 

∆t mesh steps are assumed to be the constant values. 

Now, the FDM equation for the Pennes model and the set of internal nodes will 

be presented. To simplify the mathematical notation, the local numbering of nodes 

is introduced, in particular the numbers 0, 1, 2 correspond to the nodes i, i+1, i–1. 
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The explicit FDM approximation of the Pennes equation is taken in the form 

 ( )
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where (in the case considered) 

 
1 2 1 2

1
,
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while Φe, Re are the mesh shape functions and the thermal resistances between 

the neighboring nodes. In a general case, the formulas determining thermal resis-

tances are essentially more complicated, but here (from the lack of other data) 

the constant values of c and λ are assumed. 

Denoting 
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one has 
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or 

 
2 2

1 1

0 0

1 1

1
f f f

e e e B

e e

T A B T AT BT C
− −

= =

 
= − − + + + 
 
∑ ∑  (12) 

The stability condition for the explicit FDM scheme is discussed in [11]. 

The quite simple problem connected with the ‘appending’ of the Neumann bound-

ary conditions will not be presented here. 

In the case of the CVE, the numerical model based on the FDM is more compli-

cated, of course. One can refer here to the paper [12] in which the FDM equations 

for the Cattaneo-Vernotte model are presented in details. Generally speaking, 

the ‘start point’ for the successive mathematical transformations is the equation 
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while the symbols appearing in this equation correspond to the symbols used 

in equation (8). From this three-level FDM explicit differential scheme one can 
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find the values of T0

f
. The problem of FDM equation stability is discussed 

in the previously cited work [12]. 

4. Results of computations 

The 1D problem is considered here, the tissue layer (muscle) with a thickness 

G = 15 mm is subjected to the heat flux qb = 1250 W/m
2
, while on the boundary 

x = G the no-flux condition (qb = 0) is assumed. The following thermophysical pa-

rameters are accepted: λ = 0.42 W/(mK), c = 3768·1085 J/(m
3
K), GB = 

= 0.5380·10
‒3

 1/s, Qmet = 684 W/m
3
, cB = 3650·1069 J/(m

3
K), TB = 37°C. Initial 

temperature T0 = 35.7°C. In Figures 1 and 2 the examples of the results obtained 

are shown. The heating curves at the selected points of domain for the Pennes 

model are presented in Figure 1, while the influence of non-zero value of lag times  

(τq = 2 s and τq = 5 s) is well visible in Figure 2. 

 

 

Fig. 1. Solution of the Pennes equation 

  

Fig. 2. Solutions of CVE for the relaxation times 2 s and 5 s 

5. Final remarks 

The differences between numerical solutions corresponding to the Pennes and 

Cattaneo-Vernotte models are clearly visible. They are especially evident at the points 

located in the interior of tissue domain. This can be of importance, among others, 
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for the modeling of tissue burns. The residence time at a temperature above 44°C 

is very essential at the stage of burn degree prediction (e.g. [2]). It seems that 

the Cattaneo-Vernotte model is closer to the real course of the process and can be 

widely used for the modeling of bioheat transfer problems. One can note that the 

results obtained for the Cattaneo-Vernotte model clearly illustrate the existence of 

a thermal wave front. This front moves with the finite velocity / ( )
q

v c= λ ⋅ τ  [m/s]. 

For the assumed lag times (τq = 2 s and τq = 5 s), the velocities are equal to 

0.227 mm/s, and 0.143 mm/s, respectively. 
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