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Abstract. A static analysis of circular and elliptic Kirchhoff plates resting on internal elas-

tic supports by the Boundary Element Method is presented in the paper. Elastic support has 

the character of Winkler-type elastic foundations. Bilateral and unilateral internal con-

straints are taken into consideration. The Betti’s theorem is used to derive the boundary-

domain integral equation. The direct version of the boundary element method is presented 

and simplified boundary conditions, including curvilinear boundary elements, are intro-

duced. The collocation version of boundary element method with non-singular approach is 

presented. 
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Introduction  

Plates resting on internal flexible constraints are often used in building struc-

tures. The analysis of internally supported plates in terms of the Boundary Element 

Method (BEM) has been the subject of numerous studies, e.g. [1-4]. The governing 

equation was formulated and derived using the direct approach. The BEM is the  

alternative way to the most popular Finite Element Method [5]. The BEM is often 

used in the theory of plates and is particularly suitable to analyse the plates of arbi-

trary shapes. The main advantage of BEM is its relative simplicity of formulating 

and solving problems of the potential theory and the theory of elasticity. Bur-

czyński [6] described the BEM in a comprehensive manner and its application in 

a variety of fields, the theory of elasticity together with the appropriate solutions 

and a discussion of the basic types of boundary elements. Similarly, Wrobel and  

Aliabadi [7] presented applications of BEM in a wide range. Consideration of  

internal constraints requires modification of the boundary integral equations.  

According to the Bèzine approach [2], additional internal collocation points are  

introduced in which the forces or displacements are treated as unknown variables. 

This entails transformation of the pure boundary integral equation to boundary-
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domain integral equation. An alternative coupled BEM-flexibility force method 

was proposed by Rashed [4]. The major drawback of this approach is the  

necessity of the support to the edge of the plate providing geometric invariability of 

structure.  In order to simplify the calculation procedures Guminiak et al. [8] pro-

posed an alternative formulation of the boundary-domain integral equation for 

a thin plate.  The authors used the Bèzine technique to establish deflections and 

forces of support reaction in internal collocation points. Katsikadelis et al. [9] used 

direct BEM approach to solve static and dynamic problem of plates with support 

condition inside a domain. Pawlak and Guminiak [10] applied the BEM and the 

FSM to solve similar problems considering unilateral internal constraints. Katsi-

kadelis [11] described an application of BEM in a wide aspects of engineering 

analysis of the plates. The author also applied the Analog Equation Method (AEM) 

formulation in terms of BEM. The AEM approach also was used by Guminiak and 

Litewka [12] for rectangular thin plates resting on Winkler-type elastic foundation. 

The present paper is devoted to application of BEM considering simplified 

boundary conditions for bending analysis of thin circular and elliptic plates resting 

on internal flexible support. In this approach there is no need to introduce the 

equivalent shear forces at the boundary and concentrated forces at the plate  

corners. Internal elastic support was introduced using the Bèzine technique.    

1. Integral formulation of thin plate bending  

A static problem of a plate resting on an internal flexible support is considered. 

Internal support has a discrete character. On the plate boundary, the following vari-

ables are considered: shear force 
n
T
~

, bending moment 
n
M  and deflection w , angle 

of rotation in normal direction 
n
ϕ  and angle of rotation in tangent direction 

s
ϕ . 

The expression ( ) ( ) ( )yyy
nnn

RTT +=
~

 denotes shear force for clamped and simply-

supported edges 
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Because the relation between ( )y
s
ϕ  and the deflection is known: ( ) ( ) dsdw

s
yy =ϕ

 

can be evaluated  using a finite difference scheme of the deflection with two or 

more adjacent nodal values. In this analysis, the employed finite difference scheme 

includes the deflections of two adjacent nodes. The boundary-domain integral 

equations are derived using the Betti’s theorem. Two plates are considered: the  

infinite plate, subjected unit concentrated loading and the real one. As a result, the 

first boundary-domain integral equation is in the form: 

on the boundary far from the corner 

on a small fragment of the boundary  

close to the corner 
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where the fundamental solution of biharmonic equation ( ) ( )xy −=∇ δDw 1
4  is  

given as a Green function 

( ) rr
D

w ln
8

1
,

2*

π

=xy  (3)

for a thin isotropic plate, 
n
S  expresses internal support reaction specified in inter-

nal collocation point, xy −=r , δ  is Dirac delta and ( ) ( )( )2
p

3
p 112 v E hD −=  is 

a plate stiffness. The coefficient )(xc  depends on the localization of point x and 

1)( =xc , when x is located inside the plate region, 5.0)( =xc , when x is located on 

the smooth boundary and 0)( =xc , when x is located outside the plate region.  

The second boundary integral equation can be derived by substituting a unit 

concentrated force 1
*
=P  by unit concentrated moment 1

*
=

n
M . It is equivalent to 

differentiate the first boundary-domain integral equation (2) on n direction in point 

x on a plate boundary. 
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2. Types of boundary elements 

In the simplest approach, the boundary element of the constant type is intro-

duced (Fig. 1a). It is also possible to define the geometry of the element consider-

ing three nodal points and only one collocation point connected with the relevant 

physical boundary value (Fig. 1b). The collocation point may be located slightly 
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outside of a plate edge. The geometry of the element can be defined using poly-

nominal function, described in standard coordinate system 1, 0, 1  − . These func-

tions are in the form: 

( ) ( )1 
2
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  ,1  ,1 

2

1
3

2

21
−⋅−=−=−⋅= ηηηηη NNN  (5)

 

 

 

 

  

 

 

 

 

 

 

 
Fig. 1. Boundary elements of the constant type in non-singular approach 

 

A quadratic curvilinear isoparametric element is shown in Figure 1c. According to 

the non-singular approach, the boundary (boundary-domain) integral equations can 

be formulated using the approach of single collocation point associated with each 

boundary element of the constant type and single collocation point associated with 

each geometric node of the quadratic element. 

3. Assembly of the set of algebraic equation 

Let it be assumed that a plate boundary is discretized using constant elements. 

Internal flexible support can be treated as the Winkler-type foundations, where the 

support reaction Sn can be expressed in the simple form  

nnn
wkS ⋅=  (6)

where kn and wn are the support stiffness and displacement. In the case of the free 

edge, the characteristic matrix must be expanded using additional components 

BS
G  and ∆ : 
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and B is the vector of boundary independent variables,
s
ϕ  is the vector of additio-

nal parameters of the angle of rotation in the tangential direction, which depend on 

the boundary deflection in case of the free edge,
BB
G  is the matrix grouping boun-

dary integrals dependent on type of boundary. Matrix 
BS
G  groups boundary inte-

grals of functions *

ns
M  and *

ns
M  in case of free edge occurence and it is the addi-

tional matrix grouping boundary integrals corresponding with rotation in tangential 

direction
s
ϕ . The matrix 

Bw
G  groups values of fundamental functions 

∗

w  and 
∗

w  

established in internal collocation points associated with internal constraints. The 

matrix ∆  groups the finite difference expressions for the angle of rotation in the 

tangential direction 
s
ϕ  in terms of deflections at suitable, adjacent nodes and I is 

the unit matrix. In the computer program deflections at two neighbouring nodes are 

used. Hence, for a clamped edge, a simply-supported edge and a free edge, two  

independent unknowns are always considered. Matrices 
wB
G , 

wS
G  and 

ww
G  

group boundary integrals and values of fundamental function 
∗

w  calculates in col-

location points associated with internal supports respectively. All of the designa-

tions are shown in Figure 2. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 
 

Fig. 2. Construction of characteristic matrix 

3.1. Construction of characteristic matrix 

The boundary-domain integral equation will be formulated in a non-singular 

approach. To construct the characteristic matrix ,G  integration of suitable funda-

mental function on boundary is needed. Integration is done in a local coordinate 

system ni, si connected with i
th
 boundary element and next, these integrals must be 

transformed to nk, sk coordinate system, connected with k
th
 element. Localization of 

collocation point is defined by the parameter δ or non-dimensional parameter ε. 
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This parameter can be defined as ε = δ/d or ε = δ/c (Fig. 1). To calculate elements 

of the characteristic matrix there are applied the following methods: a) classic,  

numerical Gauss procedure for non-quasi diagonal elements or b) modified, numer-

ical integration of Gauss method for quasi-diagonal elements proposed by Litewka 

and Sygulski [13]. The authors proposed inverse localization of the Gauss points in 

domain of integration, which is illustrated in Figure 3. Boundary integrals on 

curved element are calculated according to Gauss method. Integrals of fundamental 

functions over the plate edge are calculated using ni, si coordinate system, connect-

ed with i
th
 physical node. Then, they are transformed to nk, sk coordinate system [8, 

14, 15].  

 
 

 

 

 

 

 

 

 

 

 

Fig. 3. Calculation of quasi-diagonal integrals using modified Gauss method [13] 

In case of consideration of a free edge, the angle of rotation in a tangent direc-

tion can be expressed by deflection of two neighbouring nodes 
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where di is the projection of a section connecting physical nodes (collocation 

points) i and i + 1 on the line tangential to the boundary element in collocation 

point  i
th
. It is also assumed that a plate can be supported on boundary and also rest-

ing on unilateral internal supports. In the last case, especially when a plate is sup-

ported only inside its domain, the problem can be solved iteratively. On each itera-

tion step the collocation points inside a plate with a negative value of support 

reaction are switched off. The process can be stopped, when between the iterations 

there is no change of sign of any reaction. 

3.2. Construction of right-hand-side vector 

It is assumed that constant loading p is acting on a plate surface. Integrals 

∫
Ω

∗
Ωdwp  and ∫

Ω

∗
Ωdwp  can be evaluated analytically in terms of the Abdel-Akher 

and Hartley proposition (contour of loading is expressed in polygonal form) [16].  
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4. Calculation of deflection, angle of rotation, bending  

and torsional moments inside a plate domain 

The solution of algebraic equations allows one to determine the boundary varia-

bles. Then, it is possible to calculate the deflection, angle of rotation in an arbitrary 

direction, bending and torsional moments at an arbitrary point of the plate domain. 

Each value can be expressed as the sum of three variables depending on the bound-

ary variables B , external loading p and reaction of internal supports S, for example 

deflection 

( ) ( ) ( )SB    wpwww ++=  
 

(9) 

where { }T
S

BB ϕ  = . A similar relation can be applied to establish the angle of rota-

tion in an arbitrary direction. In terms of the thin plate theory, the bending mo-

ments and torsional moment are given in the classic form 

( ) ( )
yyxxx

vwwDyxM ,, , +−= , ( ) ( )
xxyyy

vwwDxM ,,y , +−=  and ( ) ( )
xyxy

wvDyxM ,1 , ⋅−−=  

and ( )yxw ,  is the function of displacements and yx,  are the global coordinates of 

an arbitrary point.  

5. Numerical examples  

Circular and elliptic plates with various boundary conditions are considered. 

Plates are subjected only to a uniformly distributed loading p = 1.0 kN/m on the  

entire surface or concentrated force P = 10.0 kN at its centre. Twenty Gauss points 

are applied to evaluate boundary integrals. Circular plates are divided by boundary 

elements with the same length. For elliptic plate localization of geometrical nodes 

on the edge for 32 boundary elements is presented in Figure 4. For 64 boundary  

elements, similar localization is assumed, dividing all of segments: l, l/2, l/3 and l/6 

by halves. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.  Localization of boundary elements inscribed in ellipse contour 
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Localization of internal collocation points corresponding to the number of 128 

discrete supports localized inside a plate domain which for circular plates is shown 

in the Figure 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. Localization of internal collocation points for a circular plate 

 

For an elliptic plate, coordinates of internal collocation point are assumed  

according to polar coordinates. The radius to the selected collocation point is  

expressed as follows:  

( )2 2 2
1 cosr b e= − ⋅ α  (10)

where ( )2 2 2 2
e a b a= − . In the considered examples, angle α  is the multiple of 

8π  rad. Localization of internal collocation points for number of 128 discrete 

supports is presented in Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6. Localization of internal collocation points for an elliptic plate 
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The following plate properties are assumed: E = 205.0 GPa and v = 0.3, thick-

ness h = 0.01 m. Internal support stiffness ki = 50.0 kN/m. The circular plate radius 

is equal to a = 2.0 m. Elliptic plate half-axes are equal to a = 3.0 m and b = 2.0 m. 

A numerical analysis was conducted using following boundary and finite element 

discretization: BEM I - rectilinear boundary element of the constant type, 

01.0== dδε ; BEM II - curved, simplified boundary element of the constant type, 

1.0== cδε ; BEM III - three-node isoparametric curved boundary element, 

1.0== cδε ; FEM - finite element analysis was carried out using 

Abaqus/STANDARD v6.12 computational program and eight-node doubly curved 

shell finite element with reduced integration (S8R) was adopted [17]. The plate 

domain was divided into 3936 and 4706 elements for a circular and elliptic plate, 

respectively. The results of calculation for circular plate clamped on a whole edge, 

resting on internal supports and subjected to the uniformly distributed loading p are 

presented in Tables 1 and 2. 
 

Table 1 

Deflection at the plate centre  

Number of boundary 

elements 

4~ pawDw =  

BEM I BEM III FEM 

32 9.8428·10–4 9.8438·10‒4 
9.8558·10–4 

64 9.8476·10–4 9.8480·10‒4 

 

Table 2 

Bending moments 

Number of boundary 

elements 

2~

paMM
r

=  

At the centre On boundary 

BEM I BEM III BEM I BEM III 

32 –0.021265 –0.021290 –0.040548 –0.040468 

64 –0.021424 –0.021430 –0.040333 –0.040317 

 

Results of calculation for circular plate simply-supported on a whole edge, rest-

ing on internal supports and subjected to the uniformly distributed loading p are 

presented in Tables 3 and 4. 
 

Table 3 

Deflection at the plate centre  

Number of boundary 

elements 

4~ pawDw =  

BEM I BEM II FEM 

32 1.0148·10‒3 1.0150·10‒3 
1.0137·10‒3 

64 1.0136·10‒3 1.0137·10‒3 
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Table 4 

Bending moment at the plate centre  

Number of boundary 

elements 

2~

paMM
r

=  

BEM I BEM II 

32 –0.029675 –0.029704 

64 –0.029809 –0.029822 

 

Results of calculation for circular plate with a whole edge free, resting on inter-

nal supports and subjected to the concentrated force P at the centre are presented in 

Table 5 and Figure 7. 

 
Table 5 

Deflection at the plate centre  

Number of boundary 

elements 

2~

PawDw =  

Bilateral  Unilateral  Bilateral 

BEM I BEM II BEM I FEM 

32 2.8556·10‒3 2.8557·10‒3 2.9135·10‒3 
2.8676·10‒3 

64 2.8558·10‒3 2.8558·10‒3 2.9146·10‒3 
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Fig. 7. Deflection along plate radius r/a 

Results of calculation for an elliptic plate with a whole edge free, resting on  

internal supports and subjected to the concentrated force P at the centre are pre-

sented in Table 6 and Figure 8. 
 

– BEM I, unilateral 

– BEM I, bilateral 

x/a 

2
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wD
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Table 6 

Deflection at the plate centre  

Number of boundary 

elements 

2~

PbwDw =  

Bilateral  Unilateral  Bilateral 

BEM I BEM II BEM I FEM 

32 3.2067·10–3 3.1256·10–3 3.2773·10–3 
3.1116 ·10–3 

64 3.2067·10–3 3.2266·10–3 3.2773·10–3 
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Fig. 8. Deflection along half-axis x/b 

Conclusions  

Static analysis of plates resting on internal elastic supports using the Boundary 

Element Method is presented. The problem was solved using the Kirchhoff theory 

of plates with the modified approach, in which the boundary conditions are defined 

so that there is no need to introduce equivalent boundary quantities dictated by the 

boundary value problem for the biharmonic differential equation even if typical 

rectilinear boundary element was used. The Bèzine technique and static fundamen-

tal solution for a usual thin plate were used to introduce supports inside a plate  

domain and establish their reactions and deflections. The modified Gauss method 

[13] was used to calculate quasi-diagonal integrals for curved boundary elements. 

The application of curved boundary elements gives a similar result as in the case of  

typical rectilinear elements. Direct collocation non-singular BEM formulation of 

plate bending considering internal supports in case of a large number of unknowns 

may lead to wrong conditioning of the characteristic matrix. The analysis of  

influence of collocation point localization on conditioning of characteristic matrix 

was carried out in [18]. 

- BEM I, unilateral 

- BEM I, bilateral 

2
Pb

wD
 

y/b 
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