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Abstract. The Cattaneo-Vernotte equation describing the heat conduction process in domain 

of solid body results from the generalization of the well - known Fourier law, in which the 

‘delay time’ (relaxation time τq) is introduced. The Cattaneo-Vernotte equation should be, 

among others, used in a case of microscale heat transfer analysis when the thermal proc-

esses are characterized by the extremely short duration (e.g. ultrafast laser pulse), the con-

siderable temperature gradients and the very small dimensions (e.g. thin metal film). In the 

paper the problem of relaxation time identification is considered. In particular, the heat 

conduction process proceeding in domain of thin metal film subjected to a laser pulse is 

analyzed. The inverse problem solution is obtained using the evolutionary algorithms. 

The information concerning the time-dependent temperature distribution on the surface 

of metal film is assumed to be known. At the stage of numerical computations the finite 

difference method (FDM) is applied. In the final part of the paper the example of computa-

tions is shown. 

Introduction 

As is well known, the classical Fourier's law is written as follows 

 ( , ) λ ( , )q x t T x t= − ∇  (1) 

where q is a heat flux, λ is a thermal conductivity. 

To take into account the finite velocity of thermal wave and ‘delay time’ of heat 

flux with respect to temperature gradient, the generalized form of formula (1) 

should be introduced 

 ( , ) λ ( , )
q

q x t T x t+ τ = − ∇  (2) 
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in which the parameter called the relaxation time τq appears. The value of this 

parameter is small and, as a rule, considering the macro-scale heat transfer the 

relaxation time can be neglected. 

The other situation takes place in a case of micro-scale heat transfer problems. 

Then the assumption of the classical form of Fourier law is not acceptable and one 

should consider the generalization (2). 

The aim of the considerations presented in the paper is the problem of relaxation 

time identification (using the evolutionary algorithms), at the same time the addi-

tional information necessary to solve the inverse problem results from the assump-

tion that the time dependent temperature on the upper external surface of the sys-

tem is known. 

1. Governing equations 

The well known macroscopic energy equation 

 
( , )

( , )
T x t

c x t
t

∂
= −∇⋅

∂
q  (3) 

can be transformed to the micro-scale when in the place of the classical Fourier 

law, one introduces the following first-order approximation of formula (2) 

 
( , )

( , ) τ λ ( , )
q

x t
x t T x t

t

∂
+ = − ∇

∂

q
q  (4) 

or 

 
( , )

( , ) τ λ ( , )
q

x t
x t T x t

t

∂
− = + ∇

∂

q
q  (5) 

This expression should be introduced to equation (3) and then 

 [ ] [ ]
( , )

τ ( , ) λ ( , )
q

T x t
c x t T x t

t t

∂ ∂
= ∇ +∇ ∇

∂ ∂
q  (6) 

Substituting – ∇q by c (∂T/∂t) one obtains 

 [ ]
2

2

( , ) ( , )
τ λ ( , )
q

T x t T x t
c T x t

t t

 ∂ ∂
+ =∇ ∇ 

∂ ∂ 
 (7) 

In the presence of internal heat sources within the domain considered the equation 

(7) takes a form 
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∂
= ∇ ∇ + +

∂

 (8) 

where Q(x, t) is a capacity of internal heat sources considered. In the next part 

of the paper, this form of energy equation is accepted because the action of laser 

beam (the Neumann boundary condition on the upper surface of the metal film) 

is substituted by the ‘artificial’ internal heat source situated within the film domain 

(e.g. [1, 2]). 

In Figure 1 the domain considered is shown and the geometrical features of the 

thin metal film allow one to treat the problem as a 1D one. In this case the source 

function according to literature (e.g. [2]) is determined by the formula 

 
( )

2

0 2

2β 1
( , ) exp β

π δ δ

p

p p

t tR x
Q x t I

t t

 −−  = − −
 
 

 (9) 

where I0 is the laser intensity which is defined as total energy carried by a laser pulse 

per unit cross-section of the laser beam, tp is the characteristic time of laser pulse, 

δ is the characteristic transparent length of irradiated photons called the absorption 

depth, R is the reflectivity of the irradiated surface and β = 4ln2. The local and 

temporary value of Q(x, t) results from the distance x between the surface subjected 

to the laser action and the point considered. 

Introduction of the function Q(x, t) causes that the boundary conditions given for 

x = 0 (as for x = L, L is the thickness of the plate) correspond to no-flux ones. 
 

 

Fig. 1. Domain considered 

The initial condition (initial temperature and initial heating rate) are assumed to 

be known. At the stage of numerical computations, the boundary-initial problem 

discussed has been solved using the variant of the finite difference method described 

in [3-5]. 
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2. Inverse problem 

To solve the inverse problem the least squares criterion is applied 

 ( ) ( )
2

1 1

1
M F

f f
q i d i

i f

S T T
MF

= =

τ = −∑∑  (10) 

where 
f

d iT  and ( ),

f f
i iT T x t=  are the measured and estimated temperatures, re- 

spectively, M is the number of sensors (e.g. [6]). The minimum of functional (10) 

has been found using the evolutionary algorithms [7]. So, the direct problems have 

been solved and the results allow one to determine the ‘measured’ time dependent 

surface temperature (x = 0). Next, we assume that the laser parameters determining 

capacity of internal source function Q(x, t) and also the thermal conductivity and 

volumetric specific heat of material are known, while the parameter τq should be 

determined (from a practical point of view the experimental estimation of τq is not 

easy). 

3. Results of computations 

In Figures 2 and 3 the example of direct problem solution is shown. The golden 

layer is subjected to a short-pulse laser irradiation which parameters are equal to: 

R = 0.93 (reflectivity), I0 = 13.7 J/m
2
 (intensity), tp = 0.1 ps = 10

–13
 s (time of laser 

pulse), δ = 15.3 nm (absorption depth). The following parameters of gold thin film 

are assumed: thermal conductivity λ
  
=
  
317  W/(mK), volumetric specific heat 

c
  
=
  
2.4897

  
MJ/(m

3
K), relaxation time τq

  
=
  
8.5

  
ps. Initial temperature equals 

T0 = 20°C. 

Using the FDM algorithm under the assumption that N = 200 and ∆t = 0.005 ps 

the transient temperature field has been found. In Figure 2 the temperature profiles 

are shown, while Figure 3 illustrates the courses of heating (cooling) curves at the 

points selected from the domain considered. 

The identification of ‘delay’ time has been done using the evolutionary algo-

rithms. The parameters of EA are collected in Table 1. 

Table 1 

Evolutionary algorithm parameters 

Number of 

generations 

Number of 

chromosomes 

Prob. of 

uniform 

mutation 

Prob. of 

nonuniform 

mutation 

Prob. of 

arithmetic 

crossover 

Prob. of 

cloning 

50 50 10% 20% 40% 5% 

 
The final result of τq estimation corresponds to 8.499999⋅10

–12
 ps, while the 

exact value was assumed to be τq = 8.5⋅10
–12
 ps. 
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Fig. 2. Temperature profiles 

 

Fig. 3. Cooling (heating) curves 
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