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Abstract. This paper contains the application of the Finite Difference Method in the
two-dimensional Fourier equation using Robin’s boundary condition (the third boundary
condition).
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Introduction

In this paper we consider the Fourier equation describing the heat transfer
in a two-dimensional domain. This equation is supplemented by the third boundary
condition, which is often called Robin’s condition.

This condition is the most “natural” condition, which can be assumed on the parts
of area adjacent to the environment. It constitutes a mathematical notation of
the heat flux's continuity and it is based on the law of Newton.

In the paper we give the direct FDM formula for the solution of the Fourier
equation with Robin’s boundary condition.

1. Solution of the problem

We consider the 2D Fourier equation [1-3]
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where / is a thermal conductivity [W/mK], ¢ is a specific heat [J/kgK], p is a mass
density [kg/m’], T is temperature [K], x, y denote the geometrical co-ordinates
and ¢ is time [s].

Then approximations of the second order partial derivatives using FDM are as
follows
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The initial condition has the form
i,7,0 :TVWH" OSZSq (3)

where T
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is the initial temperature.

Below we present a system of equations containing the Fourier equation with the
third boundary conditions [2]
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where o is the heat transfer coefficient and 7,

. 1s the ambient temperature
(the temperature of environment).

Successively we consider the systems of equations corresponding to the four verti-
ces and lateral edges of our domain, which is a rectangle.

For i=0,j=0 we have
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After transformations we get the following form
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The main matrix above the system of equations is as follows
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On the basis of the determinant of the matrix 4 we obtain the limitations on the
steps of the differential grid [4]
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The determinant of the main matrix is expressed by the following formula
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Then we have the determinant corresponding to the variable 7,

2
detAT = A A B) + A 2 _a[i—i_Lj Tenv+ﬁT001—l
T 2AxAY || (Ax)T (Ay) Ax Ay -,

2At
(1)
Thus, the temperature of node (0,0) at the time / is as follows
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Taking the following notation
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we have
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Similarly, we proceed for the other vertices: (m, 0), (m, n), (0, r).
Then we repeat the procedure for each edge.
And so, on the edge (i, 0), where 1<i<m—1, j =0 we receive
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Thus, the temperature on the edge (i, 0) 1<i<m—1, j =0 at the moment / is given

by the formula
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Assuming markings (13) we obtain
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Analogously we calculate the temperature for the other edge points:

- 1<i<m-1, j=n

- i=0,1<j<n-1

— i=m,1<j<n-1.
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The system of equations in the internal points of the area takes the following form
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The above calculations give clues about generalization to the three-dimensional
and n-dimensional case. The articles concerning these generalizations are in

preparation.

References

[1] Biernat G., Lara-Dziembek S., Pawlak E., The determinants of the block matrices in the
3D Fourier equation, Scientific Research of the Institute of Mathematics and Computer Science

2012, 4(11), 5-10.



The finite difference method in the 2D Fourier equation with Robin’s boundary condition 11

[2] Mochnacki B., Suchy J.S., Modelowanie i symulacja krzepnigcia odlewow, WN PWN, Warszawa
1993.

[3] Biernat G., Siedlecka U., Finite difference method in Fourier equation internal case-direct

formulas, Scientific Research of the Institute of Mathematics and Computer Science 2011, 2(10),
11-16.

[4] Biernat G., Mazur J., Finite difference method in the Fourier equation with Newton’s boundary

conditions direct formulas, Scientific Research of the Institute of Mathematics and Computer
Science 2008, 2(7), 123-128.



