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Abstract. In the present work a problem pertaining to the damped lateral vibrations of the 

truck crane radius change system with the developed hydraulic cylinder model that changes 

the radius has been formulated and solved.  In the adopted model the vibration energy dis-

sipation derives from the internal damping of the viscoelastic material (the Kelvin-Voigt 

rheological model) of beams that model the system. Damped vibration frequency and the 

vibration amplitude decay level have been calculated. Changes of the eigenvalues of system 

vibrations with the damping ratio change and the change of the system geometry with dif-

ferent loads observed on it have been presented. 
 

Keywords: truck crane, vibration damping, eigenvalues 

Introduction 

Research on the vibrations of the truck crane radius change system has been the 

subject of many authors. Comprehensive literature pertaining to vibrations of truck 

cranes and their elements has been included in monographs [1, 2]. Studies on free 

vibrations of the crane radius change system are presented in the work [3]. A similar 

study has been the subject of the work [4], in which an analysis of free and parametric 

vibrations of the radius change system has been conducted. The manner of modeling 

the hydraulic cylinder that changes the radius in the abovementioned works was 

simplified and the impact of damping has not been included in the systems. 

The present work considers damped vibrations of the DST0285 truck crane radius 

change system. The vibration energy dissipation during the radius change arises 

due to the internal damping of the viscoelastic material of the system. Similar solu-

tions are presented in works [5, 6]. In the work [5] an impact of small internal and 

outer damping on the stability of non-conservative beam systems has been revealed. 

Studies included in the work [6] depict the influence of internal damping on the 

vibrations of the cantilever beam with mass attached at the free end of the beam. 

1. Physical and mathematical model of the system 

The physical model of the system is presented in Figure 1. The radius change 

(boom inclination angle) is performed by means of a hydraulic cylinder mounted 
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on the rotary frame of the boom. The telescopic boom is composed of three steel 

units, where one of them is a stationary unit whereas other two are extension units, 

which are extended simultaneously with the hydraulic cylinder of the cylinder 

output stroke and the mechanical linear system cooperating with it. 

 

 

Fig. 1. The physical model of the crane radius change system  

Viscoelastic material has been characterized by the Young's modulus E and the 

viscosity coefficient E* of both the hydraulic cylinder material and boom material. 

Equations of the beam movement modeling the radius change system are as 

follows: 
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where: 

Wmn(x,t) - the lateral displacement of beams, 

Emn - Young’s moduli for particular beams, 
*

mn
E  - the viscosity coefficient of the material of particular beams, 
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Amn - beam section areas, 

Jmn - the moment of inertia for beam sections, 

ρmn - the density of the beam material, 

Pmn - longitudinal forces in beams modeling the boom and the hydraulic cylinder 

of radius change (P12 = 0), 

m = 1,2,3; n = 1,2 

x - space coordinate, 

t - time. 

Solutions of equations (1) are in the form: 

 ti

mnmn
exwtxW
*

)(),( ω

=  (2) 

where: ω
*
 - the complex eigenvalue of the system, 1−=i . 

Substitution of (2) into (1) leads to: 

 0)()()(
2

=−+ xwxwxw
mnmn

II

mnmn

IV

mn
γβ  (3) 

where: 

mnmnmn

mnmn

mn

JiEE

A

)(
**

2*

ω

ωρ
γ

+

= ,  
mnmnmn

mn

mn

JiEE

P

)(
** ω

β
+

= ,   β
12
 = 0 

Geometric boundary conditions and continuity conditions are as shown below: 
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Natural boundary conditions of the studied system are as follows: 

,0)()()(

,0)0()(,0)0()(

)()()()(

,0)0()0()(

)()()()()(

,0)0()(),()()0()(

,0)()(,0)0()(

323232323232

**

3232

3131

**

31312222

**

2222

212121

**

2121121212

**

1212

212121212121

12121212121111111111111111

21212121111111111112121212

121212121211111111

=++

=+=+−

++++

=+++

++−++

=++=+

=+=+

lwPlwJiEE

wJiEEwJiEE

lwJiEElwJiEE

wPwJωiEE

lwJωiEElwPlwJωiEE

wJωiEElwJωiEEwJωiEE

lwJωiEEwJωiEE

IIII

IIIII

IIIIII

IIII**

III**IIII**

II**II**II**

II**II**

ω

ωω

ωω

 



W. Sochacki, M. Bold 100

 

0sin)(cos])[(

)0()()()(

),0()()()(

),()()0()(

,0)()(,0)()(

313122222222

*

2222

3232

**

3232313131

**

3131

3232

**

3232313131

**

3131

212121

**

21212222

**

2222

323232

**

3232222222

**

2222

=−+++

++−+

+=+

+=+

=+=+

δδω

ωω

ωω

ωω

ωω

lwkwPwJiEE

wJiEElwJiEE

wJiEElwJiEE

lwJiEEwJiEE

lwJiEElwJiEE

S

IIII

IIIIII

IIII

IIII

IIII  (4b) 

The solution of equations (3) is expressed in the form of functions: 
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By substituting (5) into (4a-b) a homogeneous system of equations was obtained 

with respect to the unknown constants Ckmn, which in the matrix form can be 

written as: 

 [ ]( ) 0
*
=CA ω  (6) 

where: ( ) [ ]pqaA =
*
ω , (p, q = 1,2..24), [ ] ,TkmnCC =  k = 1,2-4. 

The system has a nontrivial solution when the matrix determinant of coefficients 

is equal to zero with constants Ckmn . 

 det A(ω
*
) = 0 (7) 

Finding complex eigenvalues of the matrix A(ω
*
) leads to the determination of 

damped vibration frequency Re(ω
*
) and the vibration amplitude decay level Im(ω

*
) 

of the considered system. 

2. Numerical calculation results 

Calculations were carried out for the DST0285 truck crane radius change system. 

In order to present the results of the study the non-dimensional damping parame- 

ters η for internal damping of the viscoelastic material of beams have been adopted: 
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, LS - overall length of the hydraulic cylinder. 
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Calculation results are depicted in Figures 2-4. Solid lines in figures present 

the results of the study on the system without load whereas  (dashed) lines indicate 

the results of the study on the system with load equal to P = 50 kN. Figures pertain to 

the study on the influence of internal damping of system elements on its eigenvalues. 

The dependence of the real part Re(ω
*
) and imaginary part Im(ω

*
) of the first two 

eigenvalues of the radius change system on the internal damping non-dimensional 

parameter value η is presented in Figures 2a,b. Presented results of the study pertain 

to the boom extended to the length of Lc = 15 m and the angle of its inclination 

α = 33º. 
 

a) b) 

       
Fig. 2. The dependence of the first two eigenvalues (real parts (a) and imaginary parts 

(b)) of the crane radius change system on the damping ratio η 

The results of the study on the dependence of the system eigenvalues on the 

boom inclination angle α are presented in Figure 3a,b. Calculations have been 

conducted with the damping ratio equal to η = 0,002 and the boom overall length 

Lc = 15 m. 
 

a) b) 

       
Fig. 3. The dependence of the first two eigenvalues (real parts (a) and imaginary parts 

(b)) of the crane radius change system on the boom inclination angle α 

The dependence of the real and imaginary part of the first two eigenvalues of 

the radius change system on the change of the boom overall length LC (Fig. 4a,b), 

where the damping ratio is η = 0,002 and the boom inclination angle equals 

α = 33°, has been indicated in further studies. 
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a) b) 

       
Fig. 4. The dependence of the first two eigenvalues (real parts (a) and imaginary parts 

(b)) of the crane radius change system on the boom overall length LC 

The limitation of the research to the analysis of the first two eigenvalues with 

the geometrical and damping change in the system results from the fact of decisive 

importance in engineering practice. 

Conclusions 

In this work a beam model of the telescopic boom - hydraulic cylinder system 

developed on the basis of the real system of the DST0285 truck crane has been 

presented. A study on the influence of the geometry and internal damping of the 

viscoelastic material of beams modeling the system into the system eigenvalues has 

been conducted.  On the basis of the performed calculations it is possible to state 

that the inclusion of internal damping into the consideration of the vibrations of the 

crane radius change system leads only to a small change in its vibration frequency 

(Fig. 2a) within the entire scope of the study. The analysis of the occurrence of 

imaginary eigenvalue frequency (Fig. 2b) of the system indicates (as could have 

been expected) that with the value increase of the damping ratio η the rate of the 

system’s vibration amplitude decay is higher. 

The change of the boom inclination angle causes a reduction of the second 

eigenvalue of the system (both Re(ω
*
) and Im(ω

*
)) reaching a minimum at an an-

gle α ≈ 41° and then the eigenvalues slightly increased. The change of the boom 

inclination angle without essential influence on the first eigenvalue (Fig. 3a,b).  

A length change of the boom has significant impact on the lowering of the 

damped vibration frequency (Fig. 4a) of the first and second eigenvalue. The change 

of the boom length simultaneously causes substantial lowering of the vibration 

amplitude decay coefficient of the second eigenvalue and slightly lowers the first 

eigenvalue. 

System load equal to P = 50 kN does not cause significant changes in results 

obtained with respect to the case without the observance of damping. Load lowers 

damped vibration frequencies every time without causing substantial changes of 

the vibration amplitude decay coefficient Im(ω
*
) of the first and second eigenvalue. 
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