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Abstract. In this paper a solution to the problem of the free longitudinal vibration of 

a double-nanorod-system (DNRS) is presented. The nanorods of the system are coupled by 

many translational springs. The clamped-clamped and clamped-free boundary conditions 

are employed. The problem of vibration is solved by using the Green’s function method. 

The natural frequencies were numerically calculated. 
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Introduction 

The theory of nonlocal elasticity is often used for the analysis of vibration and 

instability of nanostructures like: nanorods, nanotubes, nanobeams, etc. This theory 

was introduced to nanotechnology by Peddieson et al. [1]. The vibration analysis of 

nanostructures has been of great interest because of their promising mechanical, 

chemical, electrical, optical properties and their applications, for example in 

nanoelectromechanical, nanodevices and nanooptomechanical systems. 

The forced axial vibrations of nanorods are induced by the axial external forces. 

The frequencies of the longitudinal free vibration of nanorods system are important 

parameters which characterize the behavior of this nanorod during the enforced 

vibration. The free vibrations of the complex nanorods system were studied in 

papers [2] by Marmu and Adhikari. The authors present an investigation on the 

longitudinal vibration of the two nanorods which are coupled by longitudinally 

directed distributed springs. The nonlocal frequencies of vibration by using an ana-

lytical method have been derived. The study was an inspiration for the authors 

of the present paper to investigate the free vibration of a double-nanorod-system. 

The consideration deals with the vibration of nanorods coupled by longitudinal 

directed discrete springs. In order to solve the vibration problem, the Green’s func-

tion method is applied [3]. The problem of free vibration to the similar system 

as a classical model of a double-rod-system has been presented in reference [4]. 
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1. Formulation of the problem 

The system of two nanorods which are coupled by longitudinally directed 

n-discrete springs is considered. The equations of motion for the longitudinal vibra-

tion of the nanorods can be written in the form [1, 2]: 
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where: ( , )
i
u x t  is the axial displacement, ( )ρ

i
x   is the mass density, ( )

i
E x  is the 

modulus of elasticity, ( )
i

A x is the area of cross-section of the i-th nanorod, 
1
x , 

2
x  

are axial positions along the nanorods, 
1 2

,  ,  1,2...
j j

x x j n=  are points of the nano-

rods which are joined by a j-th spring, 
0
e  is a constant appropriate to nanorods 

material and a  is an internal characteristic size. When 
0
0=e a , the equations (1) 

are  reduced to equations of classical model of the rods system [3]. The functions 

( , )
i
u x t  satisfies the boundary conditions   

 (0, ) ( , ) 0;             1,2
∂

= = =
∂

i

i i

u
u t L t i

x
 (2) 

 

Fig. 1. Double nanorod configuration: clamped-free boundary condition 
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2. Solution of the problem 

In order to find the natural frequencies of the double-nanorods system, one 

assumes a solution of the problem in the form: 

 ( ) ( ), cos        1,2
i i
u x t U x t iω= ⋅ =  (3) 

where ω  is the circular frequency. Introducing new variable i

i

x

L
ξ =  into equations 

(1), the following equations are obtained: 
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where: 
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The functions 
1
U and 

2
U satisfy the boundary conditions which are obtained from 

equations (2)-(3) 

 (0) (1) 0;          1,2′= = =
i i

U U i  (5) 

The solution of the boundary problem (4)-(5) can be expressed with the aid of 

Green’s function and has the form: 
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Assuming 
1 1i
ξ ξ= , 

2 2i
ξ ξ= , ( 1,2,... )=i n  in the equations (6) and  in the second order 

derivative of the functions 
1 1
( )U ξ  and 

2 2
( )U ξ  we obtain a system of equations 
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After substracting of the equations (7) and the equations (8) we have a system 

 

2

1

2

1

( )

( ) ;       1,2,...

n

i j j j ij
j

n

i j j j ij
j

V K V W A

W K V W B i n

µ

µ

=

=

= −

= − =

∑

∑

 (9) 

where:  ( ) ( )
1 1 2 2
ξ ξ= −

i i i
V U U ,  ( ) ( )

1 1 2 2
ξ ξ′′ ′′= −

i i i
W U U  

( ) ( )2

1 1 1 2 2 2
, ,ξ ξ ξ ξ= +

ij i j i j
A G a G ;  ( ) ( )

2 2

21 2

1 1 2 22 2

1 2

, ,ξ ξ ξ ξ
ξ ξ

∂ ∂
= +
∂ ∂

ij i j i j

i i

G G
B a  

The equation system (9) can be written in the matrix form 

 ⋅ =D Z 0        (10) 

where: 
1 2 3 1 2 3

[ ....... ....... ]Z            =
T

n n
V V V V W W W W ; 

2

2

µ

µ

 −
=  
 

A-E A
D

B B-E
 



Free longitudinal vibration of a double-nanorod system 19

1 11 1

1 21 2

1 1

...

...
A

 
 
 =
 
 
 

M M M

K

n n

n n

n n nn

K A K A

K A K A

K A K A

,       

1 11 1

1 21 2

1 1

...

...
B

 
 
 =
 
 
 

M M M

K

n n

n n

n n nn

K B K B

K B K B

K B K B

 

The non-trivial solutions of equation (10) exist if and only if the determinant of 

matrix D is zero 

 det 0D =        (11) 

The roots 
k
Ω of equation (11) are called natural frequencies and can be determined 

numerically. 

3. The Green’s function determination 

The Green’s function 
1 1 1
( , )

j
G ξ ξ  is a solution of the following boundary 

problem [3]: 
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( )ξ η−H  is the Heaviside function. 
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The solution of the boundary problem for 
11
G  is 
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The Green’s function 
2
G  we find by replacing 

2
Ω  by 2 2

Ωr  in Eq. (18): 
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3. Numerical example 

Numerical results have been obtained for a system of two nanorods of identical 

length and the same physical properties. The system consists of clamped-free 

nanorods whose free ends are connected by one longitudinally directed spring. 

Four different values of a spring stiffness coefficient in computation were assumed: 

1
0.1;  1;  10;  100K = . For such a system four dimensionless natural vibration 

frequencies as functions of parameter µ  were calculated and these are plotted in 

Figure 2. The computations have been performed by using the package Maple [5]. 

 

  

  

Fig. 2. The first four dimensionless natural vibration frequencies as functions of  µ 
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The figure shows that as the parameter µ  increases, the frequencies decrease 

for all spring stiffnesses considered. The frequencies 
n
Ω  obtained  for 0µ =  corre-

spond to the classical model of the rod system. 

Conclusions 

The Green function method was applied to solve the problem of longitudinal 

vibration of a double-nanorod coupled by translational springs. Clamped-clamped 

and clamped-free boundary conditions were employed. Although the number 

of coupling springs considered in the presented examples was limited to one, 

the approach can be used to solve the problems of vibration of systems consisting 

of many nanorods and coupling springs. 
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