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Abstract. The heated non-homogeneous domain from the two sub-domains compound is 

considered. The temperature distribution is described by the system of two Laplace equa-

tions. At the surface Γ
c
 between sub-domains the ideal contact is assumed, at the remaining 

surfaces the Dirichlet, Neumann and Robin conditions are taken into account. The problem 

is solved by means of the boundary element method. To estimate the changes of tempera-

ture due to the change of local geometry of internal boundary Γ
c
 the implicit variant of 

shape sensitivity analysis is applied. In the final part, the results of computations are shown 

and the conclusions are formulated. 

Introduction 

The system of two Laplace equations describing temperature distribution in 

non-homogeneous domain is considered 
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where λe [W/(mK)] is the thermal conductivity of sub-domain Ωe, Te denotes the 

temperature and  x, y are the geometrical co-ordinates. 

On the contact surface between sub-domains the continuity of heat flux and the 

temperature field is assumed 
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where ∂Τe (x, y)/∂n is the normal derivative, n = [n x, n y] is the normal outward 

vector. 

On the remaining surfaces the Dirichlet, Neumann or Robin conditions can be 

taken into account. 
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The aim of the investigations is to estimate the changes of temperature due to 

change of local geometry of internal surface Γc. 

1. Boundary element method 

At first the homogeneous domain Ω is considered. In this case the boundary  

integral equation corresponding to the Laplace equation is the following [1-4]  
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where B(ξ, η)∈(0, 1) is the coefficient connected with the local shape of boundary, 

(ξ,η) is the observation point, q(x, y) = − λ∂ T(x, y)/∂n, T
 *

(ξ, η, x, y) is the funda-

mental solution 
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where r is the distance between the points (ξ, η), (x, y) and 
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while 

 ( ) ( )= − ξ + −η
x y

d x n y n   (6) 

In numerical realization of the BEM the boundary is divided into N boundary 

elements and integrals appearing in equation (3) are substituted by the sums of 

integrals over these elements 
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For the linear boundary element Γj it is assumed that 
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where Νp = (1 − θ)/2, Νk = (1 + θ)/2, θ∈[−1, 1] are the shape functions. 
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After the mathematical manipulations [2, 5] one obtains the following system 

of equations (i = 1, 2, …, R) 
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where for the single node r being the end of the boundary element Γj and being the 

beginning of the boundary element Γj+1 one has 
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In dependencies (10), (11): 
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where 

 2 2 2 2
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is the length of element Γj. 
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It should be pointed out that if (ξi,ηi) is the beginning of boundary element Γj, 

this means (ξi,ηi) = (xj
p
, yj

p
) then 
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while if (ξi,ηi) is the end of boundary element Γj: (ξi,ηi) = (xj
k
, yj

k 
) then 
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The system of equations (9) can be written in the form 
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In the case of non-homogeneous domain  Ω = Ω1 ∪ Ω2 two systems of equations 

for each sub-domain, should be taken into account separately. So, the condition (2) 

can be written in the form 
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and then one obtains the following systems of equations 
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Coupling of these system gives 
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The remaining boundary conditions should be introduced, of course. Finally, 

the system of equations (26) can be written in the form 

 =AZ B  (27) 

where A is the main matrix, Z is the unknown vector and B is the vector of the 

right-hand side. 

2. Implicit differentiation method of shape sensitivity analysis 

We assume that b is the shape parameter, this means b corresponds to the x or y 

coordinate of one of boundary node located at the contact surface between sub-

domains. The implicit differentiation method [5-8] starts with the algebraic system 

of equations (27). The differentiation of (27) with respect to b leads to the follow-

ing system of equations 
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So, this approach of shape sensitivity analysis is connected with the differentia-

tion of elements of matrices G and H (c.f. equations (12)-(15)). 

Taking into account the dependencies (10), (11) one has 

− for a single boundary node 
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− for a double boundary node 
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A differentiation of (12), (13) gives 
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Next, using the formulas (14), (15) one obtains 
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In the case when shape parameter b corresponds to the node (ξi, ηi) = (xj
p 

, yj
p
) 

or to the node (ξi, ηi) = (xj
k 
, yj

k
) then the formulas (18), (19) should be differentiat-

ed with respect to b.  

It should be pointed out that using the Taylor expansion 
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one has 

 ( , ) ( , , ) ( , , ) 2 ( , , )T x y T x y b b T x y b b U x y b b∆ = + ∆ − − ∆ = ∆   (40) 

where U = ∂T/∂b is the sensitivity function and ∆b is the perturbation of parame-

ter b. So, on the basis of formula (40) the change of temperature due to the change 

of parameter b can be estimated. 

3. Results of computations  

The non-homogeneous domain from two sub–domains compound as shown in 

Figure 1 is considered. On the upper boundary  the Dirichlet condition T = 40°C 

has been assumed, but the temperature from the node 11 to the node 23 is changing 

according to the quadratic function (Tmax = 60°C). On the bottom boundary  

T = 40°C has been accepted, on the remaining parts of boundary the Neumann 

condition q = 0 W/m
2
 has been established. At the surface between sub-domains 

the ideal contact (c.f. equation (2)) is taken into account. The discretization of the 

domain is shown in  Figure 1, while Figure 2 illustrates the temperature distribu-

tion in the domain considered.  

 

 

Fig. 1. Discretization 
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Fig. 2. Temperature distribution 

The distribution of the sensitivity function U = ∂T/∂b under the assumption that 

b = y46 = y71 (c.f. Figure 1) is the shape parameter is shown in Figure 3. The tem-

perature at the node 46 = 71 equals 47.825, while the sensitivity function at this 

node equals 1268.99. So, using the formula (40) for ∆b = 0.0001 m the change of 

temperature at the node 46 = 71 due to the change of parameter b is  equal to 

0.25°C.  In Figure 4 the changes of temperature at the nodes located on the contact 

surface between sub-domains are presented.  
 

 

Fig. 3. Distribution of function U 
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Fig. 4. Change of temperature at the contact surface due to the change of parameter  

b = y46 = y71 

Conclusions 

The non-homogeneous domain from two sub-domains compound has been con-

sidered and the temperature distribution has been described by the system of two 

Laplace equations supplemented by boundary conditions. The problem has been 

solved using the boundary element method.  The implicit method of shape sensitiv-

ity analysis has been discussed. To estimate the changes of temperature in the case 

when the local geometry of the boundary is changed the Taylor series containing 

the sensitivity function has been applied. 
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