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Abstract. The category theory provides possibilities to model many important features of 

computer science. We used the symmetric monoidal closed category for the construction of 

a model of linear type theory. Toposes as specific categories make it possible to model 

theories over types. In this article we prove that topos is symmetric monoidal closed 

category. This fact will allow us to use topos in the role of symmetric monoidal closed 

category - for construction of the models of the type theory.  

 

Introduction 

The objective of our article is to show that toposes have properties of 

symmetric monoidal closed categories. Toposes are special categories – cartesian 

closed categories with some extra structure which produce an object of subobject 

for each object [1]. This structure makes toposes more like the category of sets 

than cartesian closed categories generally are. Toposes have proved attractive for 

the purpose of modeling computations. If we want a topos to be a generalized 

mathematical theory, we suppose that a set of hypotheses or axioms are formulated 

in predicate logic. They implicitly define some kind of structure of a general 

theory defined by axioms formulated possibly in higher-order logic [2]. An 

elementary topos is one whose axioms are formulated in the first-order logic, i.e. 

an elementary topos is the generalized axiomatic set theory [3]. On the other hand, 

toposes have many important properties for expressing and modeling the logic. 

The category-theoretic notion of a topos is called upon to study the syntax and 

semantics of higher-order logic, too. Then syntactical systems of logic are replaced 

by toposes and models by functors on those toposes. We constructed a model of 

first-order linear logic [4]; we also introduced syntax of basic logical language and 

showed one of the ways of interpreting the semantics of that language in topos 

[5].The description of program behavior based on coalgebras in toposes we 

introduced in [6]. The language of linear logic can be also very suitable for 

behavior of semantic web [7]. 
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In the literature there are many approaches to the semantics of linear logic. The 

first and the simplest is the phase semantics by Girard [8]; further there are 

consequence algebras, quantales [9], coherence spaces, resource semantics [10] 

and many others. We constructed the model also in symmetric monoidal closed 

category as semantics for introduced linear logic because for any symmetric 

monoidal closed category there is a linear type theory whose model is this category 

[11, 12]. 

In [4] we constructed the model of first-order linear logic and model of the 

higher-order linear logic without exponentials in toposes. We showed a simpler 

way to construct those models. Because toposes are very useful for expressing the 

linear logic, we would like to extend our model for the exponential operators of 

linear logic, as well. For this purpose we want to show that topos is also 

a symmetric monoidal closed category, so in our approach we would be able to use 

the properties of symmetric monoidal closed categories for expressing the 

exponential operators. 

1. Basic notions 

In this section we briefly introduce notions of symmetric monoidal closed 

categories and toposes. 

1.1. Category theory 

A categoryC  is a mathematical structure consisting of objects, e.g. ,...,BA  and 

morphisms of the form BAf →: between them. Every object has the identity 

morphism AAid
A
→:  and morphisms are composable. Because the objects of 

category can be arbitrary structures, categories are useful in computer science, 

where we often use more complex structures not expressible by sets. Morphisms 

between categories are called functors, e.g. a functor DC→:F  from a category 

C  into a category D is a morphism which preserves the structure. 

1.2. Symmetric monoidal closed categories 

Symmetric monoidal closed categories are special categories which have been 

used for expressing the semantics of linear logic [2, 11]. There are also other 

approaches, like phase semantics, consequence algebras, quantales, coherence 

spaces, resource semantics and many others. 

In our approach we prefer symmetric monoidal closed category as semantics 

for intuitionistic linear logic because symmetric monoidal closed categories are 



Toposes are symmetric monoidal closed categories 

 

109

a generalization of type representation in cartesian closed categories. It also holds 

that every consequence algebra and quantale is a symmetric monoidal closed 

category when they are viewed as categories, and for any symmetric monoidal 

closed category there is a linear type theory whose model is this category. 

A monoidal category ( )rlaI ,,,,⊗C  (or C  for simple) consists of: 

• a category C ; 

• a tensor functor CCC →⊗⊗ : ; 

• natural isomorphisms rla ,,  of the form 

( ) ( )

,:

,:

,:
,,

AIAr

AAIl

CBACBAa

A

A

CBA

→⊗

→⊗

⊗⊗→⊗⊗

 

where DCBA ,,, are objects of categoryC . The first isomorphism express the 

associativity of tensor functor, the two latter the left and right neutral element of it. 

They also have to satisfy the coherence axioms expressed by the following 

commutative diagrams at Figure 1 (the triangle) and at Figure 2 (the pentagon). 

 

 

Fig. 1. Triangle - coherence axiom for the isomorphisms l and r in monoidal category 

 

Fig. 2. Pentagon - coherence axiom for the isomorphism a 

For achieving the commutativity of the tensor product we extend the monoidal 

category with a natural isomorphism 

,:
,

BABAc
BA

⊗→⊗  
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that satisfies the coherence axiom at Figures 3 and 4. 
 

 

Fig. 3. Coherence axiom for c isomorphism in monoidal category 

 

Fig. 4. Coherence axiom for c, l and r isomorphisms in monoidal category 

A symmetric monoidal closed category C  is closed, if the functor A⊗−  for 

every object A in C has a specified right adjoint – the hom functor ( )−,AHom  

),,(| −−⊗− AHomA  

such that there exist natural transformations 

( )

( )BABHomA

BABAHom

BA

BA

⊗→

→⊗

,:

,:

,

,

δ

ε
 

which satisfy the triangle identities for an adjunction: 

( ) ( ) BABBABHomBAidid
B

⊗→⊗⊗→⊗⊗= ,:εδ �  

and 

( ) ( ) ( )( ) ( ).,,,,:, BAHomABAHomAHomBAHomidHomid
A

→⊗→= εδ �  

In [13] we have defined linear type theory and its interpretation in category. 

The interpretation of linear type theory we constructed in the symmetric monoidal 

closed category as a pair of functions ( )ji, : 

( ) ( ) ( )( )−−⊗→ ,,,,,,,,,:, HomclaIEFBLinTTji C  

whereB is the set of basic types,F is the set of function symbols and E is the set 

of axioms. Then 
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( )CObBi →:  

is the type interpretation function, and 

( ) ( ) ( )BiAifj →:  

is the function interpretation mapping (defined for the function symbol Ff ∈ of 

the form BAf →: ). 

For example, if C  is a category with finite products then the tensor product ‘⊗ ’ is 

given by Cartesian category product, I is a terminal object of category C  and 

natural isomorphisms are expressed by appropriate combinations of projection 

morphisms and pairing. 

1.3. Toposes 

Toposes are special kind of category defined by axioms saying roughly that 

certain construction one can make with sets can be done in category theory [12]. 

A topos is a category Ewhich satisfies the following properties: 
 

1. E  has a terminal object 1 , and for every corner of morphisms YZX ←→ in 

E  there is a pullback (Figure 5). 

 

 

Fig. 5. Pullback in topos 

2. E  has a subobject classifier: an object (traditionally denoted) Ω  with 

a monomorphism Ω→1:true  such that for any morphism XMm >→:  in 

E  there is a unique morphism Ω→X
m
:χ  such that the diagram at Figure 6 is 

a pullback. 

 

Fig. 6. Subobject classifier in topos 



V. Slodičák 

 

112

3. E  has power objects: for each object X in E , an object X
Ω  and a morphism 

Ω→Ω×
X

X
Xeval :  such that for any morphism Ω→×YXf :  in E  there is 

a unique morphism X

X
Yf Ω→:.λ  such that the diagram at Figure 7 

commutes. 
 

 

Fig. 7. Evaluation morphism in topos 

By 1) a topos has all finite limits. In particular, the product YX × of two 

objects X and Y is the pullback of the corner of morphisms YX ←→ 1 . For each 

object X , the unique morphism to the terminal object 1  we denote 1→X
X
:! . 

The morphism Ω→X
m
:χ  of 2) is called the evaluation characteristic (or 

classifying) morphism of the monomorphism XMm >→: . In 3), the morphism 

Ω→Ω×
X

X
Xeval :  is called evaluation, and the morphism X

X
Yf Ω→:.λ  is 

called the X -transpose of Ω→×YXf : . The object X
Ω  is the exponential of 

Ω  by X . For each object X  we have an exponential functor ( ) EE→− :,XHom  

which is s right adjoint to the functor X×− , so the topos is a Cartesian closed 

category [3]. 

2. Topos is symmetric monoidal closed category 

We constructed a model of multiplicative fragment ( )�−⊗,,,1L  of linear logic in 

topos. We would like to extend this model by exponential operators of course (!) 

and why not (?). We need to express the linear exponential operators in linear 

exponential monad which is constructed over the topos. The linear exponential 

monad is usually constructed over symmetric monoidal closed category. 

Our objective is to sow that topos has properties of symmetric monoidal closed 

category because we would like to extend our model of linear logic by exponential 

operators constructed in topos. 

Topos has a subobject classifier. It is a special object Ω  of a category together 

with monomorphism true . A subobject classifier classifies subobjects of a given 

object according to which elements belong to the subobject. Because of this role, 
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the subobject classifier is also referred to as the truth value object [14]. In fact the 

way in which the subobject classifier classifies subobjects of a given object, is by 

assigning the values true to elements belonging to the subobject in question, and 

false to elements not belonging to the subobject. This is the way the subobject 

classifier is widely used in the categorical description of logic. 

Now we formulate the proof, that topos is also a symmetric monoidal closed 

category. This property is important when we want to construct a model of linear 

logic as topos. So we formulate the proposition: A topos is symmetric monoidal 

closed category. 
 

Proof. Let E  be the topos. We have to prove that E  is the symmetric monoidal 

closed category. So we have to prove that E  satisfies the definition of symmetric 

monoidal closed category. 
 

Category C  in definition of symmetric monoidal closed category is a Cartesian 

closed category [11]. According to the definition of topos is E  also Cartesian 

closed category. 

Tensor product ‘⊗ ’ has a form CCC →⊗⊗ : . Terminal object I of category 

C  is neutral element of the tensor product. 

A product ‘× ’ in topos corresponds to the tensor functor: 

.: EEE →××  

The product has neutral element 1  which is the terminal object of topos E  [3]. 

Tensor product is associative [11]. The category C  has the isomorphism 

expressing the associativity of tensor product
CBA

a
,,

. As the topos is cartesian 

closed category, from the properties of product and from the definition of category, 

we formulate the associativity in topos as an isomorphism 
ZYX

assoc
,,

 by the 

following way: 

( ) ( ).:
,,

ZYXZYXassoc
ZYX

××→××  

The left and right neutral element of the tensor product is given by isomorphisms 

A
l  and

A
r . In topos E  from the properties of product we define isomorphisms 

.:

,:

XXright

XXleft

X

X

→×

→×

1

1
 

The following equations also hold: 

( )

( ),

,

1

1

1

2

×=

×=

Xright

Xleft

X

X

π

π
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where ( )−
1

π  and ( )−
2

π  are the first and second projection morphisms: 

.:

,:

BBA

ABA

→×

→×

2

1

π

π

 

The commutativity in the category C  is expressed by the isomorphism
YX

c
,

. For 

any pair of objects ( )CObYX ∈,  we define an isomorphism 
YX

change
,

 as follows: 

while topos is cartesian closed category, we define an object ( )CObYX ∈×  

together with projections ( ) XYX =×
1

π  and ( ) YYX =×
2

π . While it holds that 

( ) ( ) ,YXdomdom ×==
21

ππ  

we formulate 
YX

change
,

 isomorphism as a product function 

YXYXchange
YX

×→×= :,
, 12

ππ  

that expresses the commutativity in topos. 

The category C  is closed if for every object ( )CObA∈  the functor A⊗− has 

a specified right adjoint, the hom functor ( )−,AHom , 

),,(| −−⊗− AHomA  

with the natural transformations 
BA,

ε  and
BA,

δ . 

Similarly we define closeness for topos: for every object ( )EObX ∈  the functor 

X×−  has the right adjoint, the hom-functor ( )−,XHom : 

),,(| −−×− XHomX  

with the natural transformations 

( ),,:

,:

Ω×Ω→

Ω→×Ω

XHomXD

Xeval

X

X

X  

which also satisfy the triangle identities for an adjunction at Figures 8 and 9: 

( ) ( ) Ω×→Ω×Ω×Ω→Ω××=
Ω×ΩΩ×

XXHomXevalidDid
XXX

,:  

and 

( ) ( ) ( ) ( )( ) ( )
,

, : Ω Ω Ω .
X XHom X

id D Hom id eval Hom X, Hom X,Hom X, X Hom X,
Ω

= → × →
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Fig. 8. Triangle identity for adjunction 

 

Fig. 9. Triangle identity for adjunction 

We have shown how the topos satisfies the definition of symmetric monoidal 

closed category. So we can conclude, that any topos E  is symmetric monoidal 

closed category given as a structure 

( )( ).,,,,,,, −−× Homrightleftassoc1E  

Conclusions 

In our paper we formulated basic aspects about the topos theory needed for our 

approach of scientific problem solving. We presented a proof that topos has 

properties of symmetric monoidal closed categories. Our next goal will be the 

construction of model of linear logic with its exponential operators of course and 

why not by using that property of topos. 
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Zusammenfassung 

Die Theorie von Kategorien bietet viele wichtige Möglichkeiten für die 

theoretische Informatik. Die Topoi sind spezielle Kategorien, die ermöglichen, die 

Theorien über den Typen zu modellieren. In unserem Artikel arbeiten wir mit der 

symmetrischen monoidalen verschlossenen Kategorie für das Konstruieren vom 

Modell der linearen Kategorie von Typen. Wir beweisen, dass der Topos eine 

symmetrische monoidale verschlosene Kategorie ist, also es ist möglich, ihn für 

das Konstruieren von Modell der linearen Theorie von Typen zu verwenden. 
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