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Abstract. A three-level HM queueing network with one typerefjuests and incomes,

which is a stochastic model for goods transpo# Ingistics transport system is studied in
this article. We studied the problems of contrabick with and without a reduction of the
current time in the case of a finite and infinientrol horizon maximizing the expected
income of a central system. We have compared timet@ods to find optimal control: the

method of complete enumeration strategies, Bellmaméthod of dynamic programming

and Howard’s method.

Introduction

In article [1] presented in this journal, the intigation carried out of
a closed Markov HM (Howard-Matalytski)-network witthe same type of

requests consisting ofM =n+m+...+m,_; queueing systems (QS)S,
i=1.nk,..1y,..(n=1y, ..(n=1, . which is a model of certain goods
transportation is considered. In this model, cémstyatem S, is the «producer» of

a certain product; systems S, S,,...,S,; are the «warehouses» where the product
is stored; § , S, ,...,Smi are the «shops» (places of goods sale), which dmmne

warehouseS, i =1(n—1). The application here is seen as the shipmenbofig

in the logistics system (LS) «producer - warehousmops».
The system of equations for the expected incometh@fcentral system is
obtained in a matrix form:

V,(k,t +At) =Q, (k,t,At) + A, (k, AN, (k.t) (1)

whereV, (k,t) is a column vector of expected incomes for cerslyatemS, dur-
ing time t, if initially the network was in stat&k consisting of components
v, (k,t) written downat the network states; A(k,At) =Hé\ij (k,At)HLxL is the matrix
of transition probabilities between the stateshaf hetwork over timeAt, if the
initial network state wagk,t); and Qn (k,t,At) is the column vector of the average
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single-step income received by syst&nduring timeAt, if at time moment the

network state wagk,t). Matrix A1 and vector@n can be found using matrif,

the intensities of requests service in QS, andnmanfrom the transitions between
network states [1].

In paper [1] an analogue of (1) was obtained takmg account the fact that the
amount inS c.u. (conventional units) being received durimgetiAt is equivalent
to BS c.u. at the present time, the amounSirc.u. being received during years
is equivalent to3"S c.u. at the present moment. Coefficight] (Gd]called the
re-evaluation (reduction) of future income coeffiti. The analogue of system (1)
in a matrix form is written as:

Vg (Kot +At) =Q, (K, At) + BA, (K, AV, (K t) )

In paper [1], the optimal control problem is formigd as well. Let us denote by
6, for the control strategy in statem, and let us considé®, ={6,} - the set of
strategies in state I, 1=12..L. The vector of strategies
0=(8,,6,,....6,) 00, x0,x..x0O, is called policy, where§ is the chosen
strategy in staté. If strategy®, or policy 6 are selected at time, then we write
B, (t) or 8(t) =(8,(t),6,(t),....6_(t)). The sequence of selected policies at every
time moment forms control8 = (8(t),8(t +At),...,0(T. ). If T, <o, it
describes the finite control horizon, otherwiske infinite one.

Let us consider thak = E(é) is the network functioning efficiency at a given

=
control interval. Then the contrdd that maximizes efficiency is called the opti-
mal one. The optimal control problem for an HM netk is to find optimal
control:

E(8 ) = maxE () 3)
[¢]

As E(S) , we can take the central systeé#®n income found using relations (1),
(2). In [1], problem (3) is solved by the total existive method of control strate-
gies.

1. Application of Bellman’s dynamic programming mehod

Let us consider the case where in every netwotte ste can apply control
strategies6,,,8,,,....8,,, for the sake of simplicity, we denote thedp,6,,....0,.

Let P(6,) =H P; (65) i be a matrix of requests transitions probabilibesveen

the QS network using strategd; R(8;) =|; (95)"MxM is a matrix of one-step
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income, 1;(8) is the income of systerfy, respectively, it is as well the waste or

is the vector of

loss of systemS; when using strategf;; r(6;)=|r(6,)],.,

constant incomes by using strate@y r,(6,) is the income of systerf§ per time
unit if the network remains in the same state asnwhsing6; ;(6,) is the
intensity of requests for service in systel§ if we use strategy6f;

M(Bs) = (4:(85). 15 (8)....41,(8y)), s=1u.

To determine the optimal control and corresponding the optimal expected
income, we use the method of dynamic programmingebgards to equation (2),
for a controlled network, we obtain:

- if t, =t+A then

Qu(k, At,8(t)) + BA, (K, A, 6, )Ny (K 1) =V, K iy, 6¢,)) (4)

where the matrix of transitions probabilities betwethe network states

ﬁh(k,At,G(tl)) and the vector of average one-step incor@ik,At,G(tl))
determine further network functioning;
- if =t +At =t +2A, then

Qu (K, AL,8(t,)) + BA, (K, 48,8, )V, g (.1, 08,)) 2V, ( £5,6¢4),6¢,)  (5)

where é(tl) from (5) is the strategy chosen at tijefrom (4), and strategy
6(t,) from (5) can be different at tinig;
- if L, =t, + A, then

Qu (K, AL, 8(ty)) +BA, (K, At, B(ty))V, 5 (K, 1, B(t), B(t,)) =
=V, 5 (K.t 0(t), 0(t,), 6(ts)) (6)
at arbitraryt,,
Qu (K, AL, B(t,,)) +BA, (K, AL, Bt ) Vo (Ko trys, B(t: ) 8(t—2), O(tns)) =

= Vi g (Kot 000, 0(t-2),(t)) @)

Let us first introduce some new notatior@g(ti) is the optimal strategy at time
t, 8 (t;)) is the optimal policy at timé;, V,:B (t;) is the optimal value of in the

central QS expected income at time montenThen:
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— if t, =t+At, considering (4) we have

Vg (Kity) = rggt‘i‘?(vn,ﬁ (k,t,0(t)) =

= rergg;{qn (k. O, 8(,)) + BA, (K, At, e(tl»vn,ﬁ(k,to)} _

=Q, (K, AL G (1)) + A, (K, AL, 6 (t)V; 5 (K, t) (8)

whereV,:,B (k,tg) =V,p (K ty) are defined, and thus we ha(ie(tﬂ anan*’ﬁ(tl);
— if t, =t + At =t +2At, considering (5) we have

V,g(k,t,) = max Vap (ki1 8(1),80,)) =

(1) 8(t2

= maxmax{én (K, A, B(t,)) + BA, (K, AL, B(t,))V, g (K., e(tl))] =

8(t2) e(ty)

= 223?{6“ (k,At,0(t,)) + BA] (k,At, 6(t,)) I’(?(S)XVWB k.t e(tl))} =

= rgggg{én (k, At, 6(t,)) +BA, (k, AL, B(t,)V (k,tl)} =
=Q, (kAL (1)) + BA, (K, AL 8 (L), 5 (ki) ©)

and as a result we haee(t,) andV, ,(k.t,);
— if t; =t, + At, considering (6) we have

Voa(kt) = max Vo, (kty,8(t),8(t,), 8(t)) =
i) = max Vo (it B(0).8)605)

= max_max |G, (k, At 8(t,)) +BA, (k,At, B(t;) Vo (k.. 8(t,), 6(t,)) =

8(t3) 8(11).8(t,)

= et B, .0, (1) B, (.00 601) M Vo (kL 800,80 ) | =
= rggg;{én (k, At, 8(t)) +BA, (K, A B(t;))V, g (k,tz)} =

= 0, (K, AL B (t)) +BA, (K,A1,8 (t;)Vo g (K1)

as a result we havé (t;) andV, 4(k,t,).
Continuing this process for a number of steps 4,,m—-1, we get optimal
policies ﬁ(tl), g'(t,),....d t,,) and optimal values of the expected income

Vo s (), Vi (o), Vi g (tns)-
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Let us consider arbitrary time moment (t,< T, Considering (7) we have
Vop(Kitn) = max V(Kb 8(t,),---.8(ty), B(t,,)) =
’ 8(t2)...-B(tm-1).8(tm)

=max_ max |Q, (k.At,6(t,)+

8(tm) B(ty),...B(tm-1)
+ BB (K, B, ()W (Kt B0) Bl ), Bt 2)| = MaAQ (. 0, Bt +
+ BA, (k, AL, 6(t,.)) I t, 1, 0(t),....00, ), H(tm_l))} -

= man{Q, (k £, 606,)) + 8, (K L BNV 5 )| =
= 0, (KB40 (1)) +BA (K, ALO (t,))Vop (trs) (10)

as a result we g4 (t,,) anan*ﬁ(k,tm). This process ends tf=T,,,, as a result
we determine optimal contr@ and optimal income valuesfﬁ (t).

The step by step algorithm for solving the probleynusing Bellman’s dynamic

programming method with a finite control horizowls as follows:

1) for each strategyd,, s=1u, using (8), we find the expression for
Vs (K1, 8(t))) at momentt;; out of all the founded expected incomes, we
choose maximum expected incorﬂéﬁ(tl) and corresponding to it optimal
strategyé (t,);

2) for each strategyd,, s=1u, using (9) anan*ﬁ(tl), we find expression
Vg (Kity,6(t;)) for momentt,, out of all the found expected incomes we
choose maximum expected incoM*gﬁ(tz) and corresponding to & (t,);

3) continuing the process at stém-1), we get optimal policied (t), ) (t,)
.....d (t,.,), and the optimal values of expected incomég(tl), V,:YB(tZ)

Vn*' 5(tm-1). Using the obtained expected incomes and (10),imb6* (t,) and
Vn*,,r;(k,tm); .
4) this process ends tf= Tmaf, as a result we determine optimal condoland the

optimal value of incom&, 5(T,,) -

Example 1.Let us consider a network consistingMf=7 QS with the number
of requestsk =11, and let us assume that=1, T . =25 The number of net-

max

work states isL=CZ+_L_1:12376. Let us also assume that the «producer» is

planning to conduct an advertising campaign. Thay cause an increased number
of goods shipments in the logistics system «producgarehouses - shops», and
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this may change other factors as well. Therefoee consider two strategies: 1) to
carry out an advertising campaign, and 2) not toyaaut an advertising campaign.

Depending on when strategy is chosen, the follownmatrices and vectors
which we believe to be specified are going to b&edint. The matrix of requests
transitions probabilities between QS using eacitesy is:

0O 0 006040 O 0 0 00505 0 O
0O 000 O 0505 0 000 O 065035
0350650 0 0 0 O 040600 0 0 O
Pe)=| 0 010 0 0 O, PB6,)={0 010 0 0 O
0 010000 0 0100 0 O
0 010000 0 0100 0 O
0 010000 00100 0 O

The matrixes of one-step incomes during the regueshsition between the QS
of the network are respectively:

0O 56
0
0
86
5
33
4

N
(V]

OCQOO0OOOWO
=

2
0
0
0 and R(8,) =
0
0

coococohoO
ococoocoo
Ooco0O0OoOWOo
cocococooo
w
cococofoo
coococohoO
A, O
Swllwooo
cococococoo
cocoooco
cocococoPo

0
The vectors of QS incomes per time unit time dependn the strategy are:
r(8)=( 7,68 46,2 7.8, 6,586)
r(8,)=( 63785428 7.2 6)
The intensity of requests service are:
u(®,) =(048 0.5 0.37, 045 0.32 0.29 0.39
u(®,) =(06, 0.53 0.46, 035 0.43 0.4, 0.59

for example|,(6,) = 048 is the intensity of requests service in syst&msing

strategy®; .

Using the Mathematica package, a computer progras worked out which
allows one to find optimal strategies in each nekwstate. Some results of
calculations are presented in Table 1, where nurhberthe right-hand column of
the Table means that one should conduct an adwertisampaign at the
appropriate interval, and number 2 - not to con@ucadvertising campaign. The

L T
number of time intervals equalé&ﬂ =2t
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Table 1
Choosing a strategy for a system «producer» at eweinterval
Network state Result of strategy choice at evergrira
(8111000) 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2
(81101,00) 2,2,2,2,2,2,2,2,2,2,2,2,2,1,1,1,11,1,1,1,1,1,1
(8110,010) 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1
(8110001 2,2,2,2,2,1,1,1,1,1,1,2,2,2,2,2,1,1,1,1,1,1,1
(51,2,21,00) 1,1,21,1,1,1,2,2,1,1,1,2,2,1,1,1,11,1,1,1,1,1,1
(51,2,2010) 1,1,1,1,1,1,2,2,1,1,1,2,1,1,1,1,11,1,1,1,1, 1,
(51,2200 2,2,2,2,2,2,1,1,1,1,2,2,1,1,1,111,2,1,1,1,1,1

From Table 1 it is clear, for example, that atiatitstate (51,22100) , an
advertising campaign should be conducted.

2. Howard method application for solution of optimd control problem

2.1. Optimal control construction without considerng revaluation
If we insert into formula (1) the asymptotic redati
V, (k,t) =V, (k) +tG, (k)
we get
Vo (K) + (t +ADG, (K) =Q, (., ) + A, (K, At)(V, (K) +1G;, (K)
where the right-hand side is equal to
Q. (k,t,A8) + A, (K, AV, (K) +tA, (k, A G, (K)

Using this equality we will obtain a system bfHoward inhomogeneous equa-
tions for the2L unknown V, (k) =|v,; (k)[.,, and G, (k) =g, (k)

IxL”

V, (k) + DG, (K) = Q, (k, At) + A, (k, AV, (K) (11)

Regarding renaming the states and introducing mm:(vnl Vo .. an)T,

G, =(gnl Op - gnL)T, C}n(At) - the column-vector of average single-step

incomes for the renamed states, aAp(At) - matrix of transitions probabilities
between the renamed states we will obtain in airiim
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V, +AtG, =Q, (At) + A, (At)V, (12)

The absolute values of weights, i =1L from (12) cannot be determined, but
it is possible to define the so-called relative ghj restingv,, =0, j =], J,...,
Ji2- Then we will obtain a system af equations withL unknowns, which has
a unique solution in the form of prof@,;, j Z j;, j2,--- jL/2 and relative weights
Vs JZ Jporeees jL/z. It is important to stress that system (12) aaddlution do
not depend on.

The economic meaning of relative weights can bdyeaaderstood from the
form of asymptotic relations for the expected ineorbet us take any two states
i andj, for them

Vhi (t) =Vhi + tg ni and an (t) = an + tgnj
hence
Vni (t) _an (t) = Vni _an = (Vni + gni) - (an + gnj)

i.e. the difference for the expected income geedray systemS, at initial net-
work statesi and j, for larget is the difference of the relative weights and pro-
fits. It shows how much more profitable it is tarstexploitation of the network in
statei than statej.

The Howard algorithm consists of two units - Estiora Control Unit (ECU),
and Improvement Control Unit (ICU). In the firsterthere are founded profits and
relative weights for fixed controb = (6,,6,,...,8, ), that allow us to determine the
S @) (@) -

&; Ty » whereR, (8;)=

=

65) , ,
! IS a matrix

LxL

: @) (
average one-step incongg, = I

. (®) . , o .
of one-step incomes,; ~ is the income of syster§, if it changes state from to
j and used strateg§, . Then we can write Howard equation (11) as

v, +0G, =0, (A + A, (ALY, (13)

where quantities@,ge')(At) and Aiei)(At) are assumed to be known in the ECU.
The solutions of system (13) are values(8) and g, (0) that are uniquely

appropriate to controB. Profit valuesg, (8) are the estimation of contrd®

quality, explaining the name of the unit.
In the second unit, the ICU there finds the congmduring higher profits with

fixed weights. Let us consider the weights assigabirarily (for examplev,; =0
Oi ) or obtained in the ECUV; =V,; (). From system (12), for eachwe have
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1( -6 ~(8)
6= O a0+ AT @, v, | (1)
where quantitiesv,; are assumed known for all Let us find a control@i’that

maximizes (14) for alB , or equivalently, that maximizes the criterion
1( @) ~(8)
Gy = o Q@) + A | 15)

If you solve the problem of maximizing (15) for al& 12,...,L, then you will
obtain control® —(a_ 62 Q which gives no less profit than contrél with
weightsv.. (8) .

A bunch of ECU and ICU, as amended by auxiliarytaunf choice control unit
(CCU) 6, the choice of weights unit (CWUY,; and cycle organization unit

(COU) forms the Howard iterative algorithm. Thewl@hart of this algorithm is
shown in Figure 1.

| CCU - Unit of Choice ControB |

Y

ECU - Estimation Control Unit
Determlnlngvm(e) andg (6) from system (13) no

ni

A

COU - Cycle Organization Unif yes

5 50 5 the end

Y
ICU - Improvement Control Unit

Determiningé from condition

17 00 ~@p
Gy=—|0, +4, V, |>max
Ar IF‘

A

Choice of weightsy

ni

Fig. 1. Scheme of Howard iterative algorithm

The algorithm starts functioning with either a CGwith a CWU. In the first
case weights, () and profitg,;(8) i=LL are found in the EGting these
data an attempt to improve contrél in the ICU ssuaned. If it succeeds, i.e.
B #6, the ECU and ICU are cyclically finished thougle t6CU, otherwise the
CCU stops the iteration process, and obtained valtmgether withg(6) are an-
nounced to be optimal, i.®. =06
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2.2. Optimal control construction with consideringrevaluation

Let us assume that- «, the optimal control is to be sought in the claks o
stationary. We take into account income revaluafi@rx 1), and as a criterion for
optimal control, we take the limit income as dedine [1]:

Vo (8) =G (20 (1 - BA® (a1)) (16)

Considering revaluation, recurrence relation (dpved us to pass to limit
t - o and get

Vi 5o = Qu (A1) + BA, (BOV, 5., (17)

We have the system df Howard equations fot variablesv, 5.1, Vi 502;
-» Vapw. - It Underlies the Howard iterative algorithm oftiopal control (optimal
policy) construction. As in the previous sectidre algorithm consists of two main
units - ECU and ICU.

In the first one at fixed contrd, a system of equations is solved

Vype = QP (48) +BA® (A)V, 5., (18)

concerning marginal incomeg; ,, , however,(ﬁf(At) and A?(At) are assumed to
be known. Having the solution of the systémﬂ,w(ﬁ) will be obtained so that it
unambiguously assesses contfal Hence the name of the unit is the Estimation

Control Unit.

In the second unit, the ICU concerned with thedixalues of limited income,
for example, that are zero or obtained in ECWY(, =V, .. (6)), for all i
strategiesd, are defined so that maximize the criterion

= (@@ A @) - max @9

If we soIv,e the, prc,)blem,of maximizing (19) for alk1, 2, ..., L, we will ob-
tain control® =(8,6,,...,8, ), which gives an income limit not less than control
6, to which limit incomesV, ,(6) correspond.

As in the previous section, a bunch of ECU and @&Jamended by auxiliary
units and a unit of the choice control unit (CCthg choice of limit incomes unit
(CLIU) and cycle organization unit (COU) forms tHeward iterative algorithm.

The algorithm starts working with either the CCUGLIU. In the first case the
limit incomes v, ,; Oi are found in the ECU on the assumption that tiectes
in the CCU controld, Q¥ and A® are formed.
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in the ICU we attempt to find contrcﬁ'
which maximizes criterion (19) for eadks 1,2...,L and thereby improving con-
trol 0. If it succeeds, i.ef # 8, the ECU and ICU cyclically finished through the
COU, otherwise the COU stops the iterations, amstilted obtained along with
Vs, (6) is announced to be optimal, i®.=0.

If the algorithm starts from the CLIU (for examptége limit income for alli

and control® are equal to zero), then in the ICU contébli 0 is determined and
an iterative process is organized through the COU.

Using the founded values of

10,1

Example 2.Let us suppose that the system «producer» is iplgrnta give a dis-
count on freight. Let us consider a logistics systeonsisting oM =9 QS and the
number of requests isK =8, f=055 At=1. The number of states is

L :Cf;;_l =12870. Therefore, we must consider two strategies: Inédke a dis-

count on freight, 2) not to make discounts on teigHowever, this may change
other factors as well. Let the vectors of systemt®ines per time unit, depending
on the strategy be:

r(e,)=( 34, 5 19, 62 4, 7, 34, 57, 6)
andr(8,)=( 46, 09, 25 69, 05 8 46, 57, 69)

The matrix of requests transitions probabilitiesagen network QS be as fol-
lows:

0O 0 0 035 01 055 O 0
0 00 0O O O 0207 01
05050 0 0 0O 0 O O
0 01 0 0O 0O O O O

PG)={0 01 0 0 O O 0 O
0O 01 0 0O 0O O O O
0 01 0 0O 0O O O O
0 01 0 0O 0O O O O
0 01 0 0O 0O O O O
0O 0 0030303 0 0 O
0O 0 0 0 0O 0 02504 035
045 0550 0 0 O O O O
O 01 0 0 0 0 0 O

PG)=l 0 0 1 0 0 O O 0 O
O 01 0 0 0 0 0 O
O 010 0 0O 0 0 O
O 01 0 0 0 0 0 O
O 01 0 0 0O 0 0 O

and the matrixes of one-step incomes for the raquassition between the QS
respectively are:
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34 0 0 6 82 1 0 0 O
0O 0 00O O O 8 0 83
3571 0 0 0 0 0 O
0O 0 6 560 0 0 0 O

RG,)=|0 0 83 0 0 0 0 0 0]and
0O 0 4 0 0720 0 0
0O 0 8 0 0 0 48 0 O
0O 01 0 0 0 0 590
O 0 30 0 0 0 0 6
460 0 6 2 1 0 0 O
000 O O O 8 0 3
3 7250 0 0 0 0 O
006 69 0 0 0 0 O

RB,)=| 0 010 0 025 0 0 O O
004 0 0 650 0 O
0 068 0 0 0 46 0 O
0 051 0 0 0 0 550
003 0 0 0 0O 0 59

The intensity of requests service in the systemdeurthese strategies are
respectively the following:

u®)=( 07, 05 041 05 002 04, 073 062 031)
andu®,)=( 06, 05 036 07, 041 047, 056, 05, 019)

According to the Howard iterative algorithm takiimgo account revaluation,
the following strategies ensuring &, — c maximum limit income obtaining

are optimal.
Table 2
Choosing strategy in LS depending on initial statefmetwork

Network states Resu(l;[h%ficsérategy Network states Resu(l:th(();cs;rategy
(30,2,20,0,01,0) 1 (001100,24,0) 2
(30,2,2,0,0,001) 2 (001100231 2
(30,21,2,0,0,0,0) 2 (001100,2,2,2) 1
(30,2111,0,00) 2 (001100213 1
(30,211,01,00) 2 (0,0110,0,204) 1
(30,211,0,010) 1 (00110015,) 1
(30,211,0000 2 (001100141) 2
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3. Comparison of three methods for solving optimalantrol problems

Considering the optimal control problem of an HMwnerk with incomes, three
methods were used. They are: the method of complateneration of strategies
[1], dynamic programming method and the Howard mweéthThe applying
conditions of these methods are shown in Table 3.

Our calculations for various HM-networks have shotkat the method of
complete enumeration for the solution of an optiowitrol problem has solved it
almost three times faster than the Bellman methatywamic programming. How-
ever, the method of dynamic programming allows tmenore clearly show the
choice of strategy at each intermediate intervad, @sing the method of complete
enumeration, the strategy choice is carried outlferwhole considered time inter-
val.

Table 3

Applying conditions of methods for solving optimalcontrol problem

Method of Bellman’s dynamic
solution >
Method of complete programming method Howard method
enumeration
Consideri| Without | Consideri| Without | Consideri | Without
Contro ng consideri ng consideri ng considerin
Horizon revaluatio ng revaluatio ng revaluatio g
n revaluatio n revaluatio n revaluation
n n
Infinite + + - - + -
Finite + + + - - +

We have also discovered, that the method of comgletimeration is about one
and a half times faster than the Howard methodoteesthe problem. However,
with an increasing number of control strategies, phocess of solving a problem
by the complete enumeration method becomes mdieutlif therefore it is better
to obtain results by using the Howard method.
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