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Abstract. A three-level HM queueing network with one type of requests and incomes, 
which is a stochastic model for goods transport in a logistics transport system is studied in 
this article. We studied the problems of control choice with and without a reduction of the 
current time in the case of a finite and infinite control horizon maximizing the expected 
income of a central system. We have compared three methods to find optimal control: the 
method of complete enumeration strategies, Bellman’s method of dynamic programming 
and Howard’s method. 

Introduction 

In article [1] presented in this journal, the investigation carried out of  
a closed Markov HM (Howard-Matalytski)-network with the same type of  
requests consisting of 11 ... −+++= nmmnM  queueing systems (QS) iS , 

,)1(,...,1,...,1,,...1 11 1
−= nni m ,)1(...,

)1( −
−

nmn  which is a model of certain goods 

transportation is considered. In this model, central system nS  is the «producer» of 

a certain product; systems 1S , 2S ,…, 1−nS  are the «warehouses» where the product 

is stored; 
1i

S ,
2i

S ,…,
imi

S are the «shops» (places of goods sale), which come from 

warehouse iS , )1(,1 −= ni . The application here is seen as the shipment of goods 
in the logistics system (LS) «producer - warehouses - shops».  

The system of equations for the expected incomes of the central system is 
obtained in a matrix form: 

 ˆ ˆ( , ) ( , , ) ( , ) ( , )n n n nV k t t Q k t t A k t V k t+ ∆ = ∆ + ∆  (1) 

where ),( tkVn  is a column vector of expected incomes for central system nS  dur-
ing time t , if initially the network was in state k  consisting of components 

),( tkvn  written down at the network states; 
LLijn tkatkA

×
∆=∆ ),(ˆ),(ˆ  is the matrix 

of transition probabilities between the states of the network over time t∆ , if the 

initial network state was );,( tk  and ),,(ˆ ttkQn ∆  is the column vector of the average 
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single-step income received by system nS  during time ,t∆  if at time moment t  the 

network state was ).,( tk  Matrix nÂ  and vector nQ̂  can be found using matrix ,P  
the intensities of requests service in QS, and incomes from the transitions between 
network states [1]. 

In paper [1] an analogue of (1) was obtained taking into account the fact that the 
amount in S  c.u. (conventional units) being received during time t∆  is equivalent 
to Sβ  c.u. at the present time, the amount in S  c.u. being received during n  years 
is equivalent to Snβ  c.u. at the present moment. Coefficient ]1,0(∈β  is called the 
re-evaluation (reduction) of future income coefficient. The analogue of system (1) 
in a matrix form is written as: 

 , ,
ˆ ˆ( , ) ( , ) ( , ) ( , )n n n nV k t t Q k t A k t V k tβ β+ ∆ = ∆ + β ∆  (2) 

In paper [1], the optimal control problem is formulated as well. Let us denote by 

lθ  for the control strategy in state l  m, and let us consider }{ ll θ=Θ  - the set of 
strategies in state l , Ll ,...,2,1= . The vector of strategies 

LL Θ××Θ×Θ∈θθθ=θ ...),...,,( 2121  is called policy, where lθ  is the chosen 

strategy in state l . If strategy lθ  or policy θ  are selected at time t , then we write 

)(tlθ  or )).(),...,(),(()( 21 tttt Lθθθθ =  The sequence of selected policies at every 

time moment forms control )).(),...,(),(( maxTttt θθθθ ∆+=  If ,max ∞<T  it 
describes the finite control horizon, otherwise - the infinite one. 

Let us consider that )(θ= EE  is the network functioning efficiency at a given 

control interval. Then the control 
∗

θ  that maximizes efficiency is called the opti-
mal one. The optimal control problem for an HM network is to find optimal 
control: 

 ( ) max ( )E E
∗

θ
θ = θ  (3) 

As )(θE , we can take the central system nS  income found using relations (1), 
(2). In [1], problem (3) is solved by the total exhaustive method of control strate-
gies. 

1. Application of Bellman’s dynamic programming method 

Let us consider the case where in every network state we can apply u  control 
strategies ,,...,, 21 lull θθθ  for the sake of simplicity, we denote them uθθθ ,...,, 21 . 

Let 
MMsijs pP

×
θ=θ )()(  be a matrix of requests transitions probabilities between 

the QS network using strategy ;sθ  
MMsijs rR

×
θ=θ )()(  is a matrix of one-step 



Solution of optimal control problem for the three-level HM-Network  –  II 157

income, )( sijr θ  is the income of system iS , respectively, it is as well the waste or 

loss of system jS  when using strategy ;sθ  
Msis rr

×
θ=θ

1
)()(  is the vector of 

constant incomes by using strategy ,sθ  )( sir θ  is the income of system iS  per time 

unit if the network remains in the same state as when using ;sθ  )( si θµ  is the  

intensity of requests for service in system iS  if we use strategy θ ;s  

( ))(),...,(),()( 21 snsss θµθµθµ=θµ , us ,1= . 
To determine the optimal control and corresponding to it the optimal expected 

income, we use the method of dynamic programming. In regards to equation (2), 
for a controlled network, we obtain: 
– if 1t t t= + ∆  then 

 1 1 , , 1 1
ˆ ˆ( , , ( )) ( , , ( )) ( , ) ( , , ( ))n n n nQ k t t A k t t V k t V k t tβ β∆ θ + β ∆ θ = θ  (4) 

where the matrix of transitions probabilities between the network states 

))(,,(ˆ
1ttkAn θ∆  and the vector of average one-step incomes ))(,,(ˆ

1ttkQn θ∆  
determine further network functioning; 

– if 2 1 2t t t t t= + ∆ = + ∆ , then 

 2 2 , 1 1 , 2 1 2
ˆ ˆ( , , ( )) ( , , ( )) ( , , ( )) ( , , ( ), ( ))n n n nQ k t t A k t t V k t t V k t t tβ β∆ θ + β ∆ θ θ = θ θ  (5) 

where )( 1tθ  from (5) is the strategy chosen at time 1t  from (4), and strategy 

)( 2tθ  from (5) can be different at time ;2t  

– if 3 2t t t= + ∆ , then 
 

 

))(),(),(,,( 3212, ttttkVn θθθβ=    (6) 

at arbitrary mt  

=θθθθ∆β+θ∆ −−−β ))(),(),...,(,,())(,,(ˆ))(,,(ˆ
1211, mmmnmnmn ttttkVttkAttkQ

 

 
))(),(),...,(,,( 11, mmmn ttttkV θθθβ −=

 (7) 

Let us first introduce some new notations: )(
*

itθ  is the optimal strategy at time 

it , )(
*

itθ  is the optimal policy at time ,it  )(
*

, in tV β  is the optimal value of in the 

central QS expected income at time moment it . Then: 

=θθθ∆β+θ∆ β ))(),(,,())(,,(ˆ))(,,(ˆ
212,33 tttkVttkAttkQ nnn
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– if ttt ∆+=1 , considering (4) we have 

 
=θ= βθβ ))(,,(max),( 11,

)(
1

*

,
1

ttkVtkV n
t

n

=




 θ∆β+θ∆= βθ

),())(,,(ˆ))(,,(ˆmax 0

*

,11
)( 1

tkVttkAttkQ nnn
t

 

 
),())(,,(ˆ))(,,(ˆ

0
*
,1

*
1

* tkVttkAttkQ nnn βθβθ ∆+∆=  (8) 

where ),(),( 0,0

*

, tkVtkV nn ββ =  are defined, and thus we have )( 1

*
tθ  and );( 1

*
, tVn β  

– if ttttt ∆+=∆+= 212 , considering (5) we have 

=θθ= β
θθ

β ))(),(,,(max),( 212,
)(),(

2

*

,
21

tttkVtkV n
tt

n  

[ ]=θθ∆β+θ∆= β
θθ

))(,,())(,,(ˆ))(,,(ˆmaxmax 11,22
)()( 12

ttkVttkAttkQ nnn
tt

 

=




 θθ∆β+θ∆= βθθ
))(,,(max))(,,(ˆ))(,,(ˆmax 11,

)(
22

)( 12

ttkVttkAttkQ n
t

nn
t

 

=




 θ∆β+θ∆= βθ

),())(,,(ˆ))(,,(ˆmax 1

*

,22
)( 2

tkVttkAttkQ nnn
t

 

),())(,,(ˆ))(,,(ˆ
1

*
,2

*
2

* tkVttkAttkQ nnn βθβθ ∆+∆=   (9) 

and as a result we have )( 2

*
tθ  and );,( 2

*
, tkVn β  

– if ttt ∆+= 23 , considering (6) we have 

=θθθ= β
θθθ

β ))(),(),(,,(max),( 3213,
)(),(),(

3

*

,
321

ttttkVtkV n
ttt

n  

[ ] =θθθ∆β+θ∆= β
θθθ

))(),(,,())(,,(ˆ))(,,(ˆmaxmax 212,33
)(),()( 213

tttkVttkAttkQ nnn
ttt

 

=




 θθθ∆β+θ∆= β
θθθ

))(),(,,(max))(,,(ˆ))(,,(ˆmax 212,
)(),(

33
)( 213

tttkVttkAttkQ n
tt

nn
t

 

=




 θ∆β+θ∆= βθ

),())(,,(ˆ))(,,(ˆmax 2

*

,33
)( 3

tkVttkAttkQ nnn
t

 

),())(,,(ˆ))(,,(ˆ
2

*

,3

*

3

*
tkVttkAttkQ nnn βθ∆β+θ∆=  

as a result we have * 3( )tθ  and ).,( 3
*
, tkVn β  

Continuing this process for a number of steps 4, 5,..., 1−m , we get optimal 

policies ),( 1
* tθ  * *

2 1( ),..., ( )mt tθ θ −  and optimal values of the expected income 

),( 1
*
, tVn β  ).(),...,( 1

*
,2

*
, −mnn tVtV ββ  
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Let us consider arbitrary time moment mt  ( ).maxTtm≤  Considering (7) we have 

=θθθ= −
θθθ

β
−

))(),(),...,(,,(max),( 11
)(),(),...,(

*

,
11

mmmn
ttt

mn ttttkVtkV
mm

 

[ +θ∆=
−θθθ

))(,,(ˆmaxmax
)(),...,()( 11

mn
ttt

ttkQ
mm

 

] [ +∆=∆+ −−− ))(,,(ˆmax)(),(),...,(,,())(,,(ˆ
)(

1211, mn
t

mmmnmn ttkQttttkVttkA
m

θθθθθβ
θβ  

=
∆+ −−−

−−
))(),(),...,(,,(max))(,,(ˆ

1211,
)(),(),...,( 121

mmmn
ttt

mn ttttkVttkA
mm

θθθθβ βθθθ

[ ]=∆+∆= − )())(,,(ˆ))(,,(ˆmax 1
*
,

)(
mnmnmn

t
tVttkAttkQ

m
βθ

θβθ  

)())(,,(ˆ))(,,(ˆ
1

*

,

**

−βθ∆β+θ∆= mnmnmn tVttkAttkQ             (10) 

as a result we get )(
*

mtθ  and ),(*
, mn tkV β . This process ends if maxTt = , as a result 

we determine optimal control 
*

θ  and optimal income values ).(*
, tVn β  

The step by step algorithm for solving the problem by using Bellman’s dynamic 

programming method with a finite control horizon looks as follows: 

1) for each strategy ,sθ  us ,1= , using (8), we find the expression for 

))(,,( 11, ttkVn θβ at moment 1t ; out of all the founded expected incomes, we 

choose maximum expected income )( 1
*
, tVn β  and corresponding to it optimal 

strategy *
1( )tθ ; 

2) for each strategy ,sθ  us ,1= , using (9) and )( 1
*
, tVn β , we find expression 

))(,,( 22, ttkVn θβ  for moment 2t , out of all the found expected incomes we 
choose maximum expected income )( 2

*
, tVn β  and corresponding to it );( 2

* tθ ; 

3) continuing the process at step )1( −m , we get optimal policies ),( 1
* tθ  )( 2

*
tθ

,…, ),( 1
*

−mtθ  and the optimal values of expected incomes ),( 1
*
, tVn β  )( 2

*

, tVn β ,…,

).( 1
*
, −mn tV β  Using the obtained expected incomes and (10), we find )(

*

mtθ  and 

);,(*
, mn tkV β ; 

4) this process ends if maxTt = , as a result we determine optimal control 
*

θ  and the 

optimal value of income )( max

*

, TVn β . 

Example 1. Let us consider a network consisting of =M 7 QS with the number 
of requests =K 11, and let us assume that 1=∆t , 25max =T . The number of net-

work states is 12376
17

1117 ==
−

−+CL . Let us also assume that the «producer» is 
planning to conduct an advertising campaign. This may cause an increased number 
of goods shipments in the logistics system «producer - warehouses - shops», and 

*  
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this may change other factors as well. Therefore, we consider two strategies: 1) to 
carry out an advertising campaign, and 2) not to carry out an advertising campaign. 

Depending on when strategy is chosen, the following matrices and vectors 
which we believe to be specified are going to be different. The matrix of requests 
transitions probabilities between QS using each strategy is: 

( )























=θ

0000100
0000100
0000100
0000100
0000065.035.0
5.05.000000

004.06.0000

1P ,  ( )























=θ

0000100
0000100
0000100
0000100
000006.04.0
35.065.000000
005.05.0000

2P  

The matrixes of one-step incomes during the requests transition between the QS 
of the network are respectively: 

( )























=θ

0000400
00003.300
0000500
00006.800
0000043.5
6300000
0026.5000

1R  and ( )























=θ

00005.400
0000300
00005.500
0000800
0000046.3
1.6300000

002.26000

2R  

The vectors of QS incomes per time unit time depending on the strategy are: 

( )65.  ,6  ,7.8  ,2  ,6.4  ,86.  ,7)( 1 =θr  

( )6  ,7.2  ,8  ,24.  ,5  ,87.  ,3.6)( 2 =θr  

The intensity of requests service are: 

( )0.35  ,0.29  ,0.32  ,45.0  ,0.37  ,0.5  ,48.0)( 1 =θµ  

( )0.55  ,0.4  ,0.43  ,35.0  ,0.46  ,0.53  ,6.0)( 2 =θµ  

for example 48.0)( 11 =θµ  is the intensity of requests service in system 1S using  

strategy 1θ . 
Using the Mathematica package, a computer program was worked out which 

allows one to find optimal strategies in each network state. Some results of 
calculations are presented in Table 1, where number 1 in the right-hand column of 
the Table means that one should conduct an advertising campaign at the 
appropriate interval, and number 2 - not to conduct an advertising campaign. The 

number of time intervals equals 25max =
∆t

T
.  
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Table 1  

Choosing a strategy for a system «producer» at every interval 

Network state Result of strategy choice at every interval 

)0,0,0,1,1,1,8(  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 

)0,0,1,0,1,1,8(  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 

)0,1,0,0,1,1,8(  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1 

)1,0,0,0,1,1,8(  2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1 

… …. 

)0,0,1,2,2,1,5(  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 

)0,1,0,2,2,1,5(  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 

)1,0,0,2,2,1,5(  2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 

 
From Table 1 it is clear, for example, that at initial state )0,0,1,2,2,1,5( , an 

advertising campaign should be conducted. 

2. Howard method application for solution of optimal control problem 

2.1. Optimal control construction without considering revaluation 

If we insert into formula (1) the asymptotic relation  

)()(),( ktGkVtkV nnn +=  

we get 

))()()(,(ˆ),,(ˆ)()()( ktGkVtkAttkQkGttkV nnnnnn +∆+∆=∆++  

where the right-hand side is equal to 

)(),(ˆ)(),(ˆ),,(ˆ kGtkAtkVtkAttkQ nnnnn ∆+∆+∆  

Using this equality we will obtain a system of L  Howard inhomogeneous equa-
tions for the L2  unknown  

Lnin kvkV
×

=
1

)()(  and 
Lnn kgkG

×
=

1
)()( : 

 )(),(ˆ),(ˆ)()( kVtkAtkQktGkV nnnnn ∆+∆=∆+   (11) 

Regarding renaming the states and introducing vectors ( ) ,...21
T

nLnnn vvvV =  

( ) ,...21
T

nLnnn gggG =  )(ˆ tQn ∆  - the column-vector of average single-step 

incomes for the renamed states, and )(ˆ tAn ∆  - matrix of transitions probabilities 
between the renamed states we will obtain in a matrix form 
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 nnnnn VtAtQtGV )(ˆ)(ˆ ∆+∆=∆+  (12) 

The absolute values of weights niv , Li ,1=  from (12) cannot be determined, but 
it is possible to define the so-called relative weight, resting ,0=njv  1jj = , 2j ,…,

2Lj . Then we will obtain a system of L  equations with L  unknowns, which has 
a unique solution in the form of profit nig , 1jj ≠ , 2j ,…, 2Lj  and relative weights 

niv , ,, 21 jjj ≠ …, 2Lj . It is important to stress that system (12) and its solution do 
not depend on .t  

The economic meaning of relative weights can be easily understood from the 
form of asymptotic relations for the expected income. Let us take any two states 
i and ,j  for them 

ninini tgvtv +=)(  and njnjnj tgvtv +=)(  

hence 

)()()()( njnjnininjninjni gvgvvvtvtv +−+=−=−
 

i.e. the difference for the expected income generated by system nS  at initial net-
work states i  and ,j  for large t  is the difference of the relative weights and pro-
fits. It shows how much more profitable it is to start exploitation of the network in 
state i  than state .j  

The Howard algorithm consists of two units - Estimation Control Unit (ECU), 
and Improvement Control Unit (ICU). In the first one, there are founded profits and 
relative weights for fixed control ),...,,( 21 Lθθθ=θ , that allow us to determine the 

average one-step income ∑
=

θθθ
=

L

j
ijnijni
iii

raq
1

)(

,

)()(
, where 

LL
nijsn

s
rR

×

θ
=θ

)(
)(  is a matrix 

of one-step incomes, 
)( s

nijr
θ

 is the income of system nS  if it changes state from i  to 

j  and used strategy sθ . Then we can write Howard equation (11) as 

 nnnnn VtAtQtGV
ii

)(ˆ)(ˆ )()(
∆+∆=∆+

θθ
 (13) 

where quantities )(ˆ )(
tQ

i

n ∆
θ

 and )(ˆ )(
tA

i

n ∆
θ

 are assumed to be known in the ECU. 

The solutions of system (13) are values )(θniv  and )(θnig  that are uniquely 

appropriate to control θ . Profit values )(θnig  are the estimation of control θ  
quality, explaining the name of the unit. 

In the second unit, the ICU there finds the control ensuring higher profits with 
fixed weights. Let us consider the weights assigned arbitrarily (for example 0=niv  

i∀ ) or obtained in the ECU ( )(θ= nini vv ). From system (12), for each i  we have 
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






 −∆+∆
∆

=
θθ

nnnnn VVtAtQ
t

G
ii

)(ˆ)(ˆ1 )()(
  (14) 

where quantities niv  are assumed known for all .i  Let us find a control ′θi that 

maximizes (14) for all iθ , or equivalently, that maximizes the criterion 

 







 ∆+∆
∆

=
θθ

nnn VtAtQ
t

G
ii

)(ˆ)(ˆ1 )()(

0   (15) 

If you solve the problem of maximizing (15) for all Li  ..., ,2 ,1= , then you will 

obtain control 1 2( , ,..., )L
′ ′ ′ ′θ = θ θ θ , which gives no less profit than control θ  with 

weights )(θniv . 
A bunch of ECU and ICU, as amended by auxiliary units of choice control unit 

(CCU) θ , the choice of weights unit (CWU) niv  and cycle organization unit 
(COU) forms the Howard iterative algorithm. The flow chart of this algorithm is 
shown in Figure 1. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. Scheme of Howard iterative algorithm  

The algorithm starts functioning with either a CCU or with a CWU. In the first 
case weights  and profits ,  are found in the ECU. Using these 
data an attempt to improve control  in the ICU is assumed. If it succeeds, i.e. 

, the ECU and ICU are cyclically finished though the CCU, otherwise the 
CCU stops the iteration process, and obtained value  together with  are an-
nounced to be optimal, i.e. . 

)(θniv )(θnig Li ,1=
θ

θ≠
′

θ
θ )(θg

θ=θ
*

the end 

CCU - Unit of Choice Control  

ECU - Estimation Control Unit 

Determining  and  from system (13) 

ICU - Improvement Control Unit 

Determining  from condition 

 

COU - Cycle Organization Unit 

? 

yes 

no 

Choice of weights  
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2.2. Optimal control construction with considering revaluation 

Let us assume that ,∞→t  the optimal control is to be sought in the class of 
stationary. We take into account income revaluation )1( <β , and as a criterion for 
optimal control, we take the limit income as defined in [1]: 

 ( ) 1
( ) ( )

, ,
ˆ ˆ( ) ( ) 1 ( )n n nV Q t A t

−θ θ
β ∞ θ = ∆ − β ∆  (16) 

Considering revaluation, recurrence relation (2) allows us to pass to limit 
∞→t  and get 

 ( ) ∞∞ ∆+∆= ,,,, )(ˆˆ
ββ β nnnn VtAtQV  (17) 

We have the system of L  Howard equations for L  variables 1,,, ∞βnv , 2,,, ∞βnv , 

…, Lnv ,,, ∞β . It underlies the Howard iterative algorithm of optimal control (optimal 

policy) construction. As in the previous section, the algorithm consists of two main 
units - ECU and ICU. 

In the first one at fixed control θ, a system of equations is solved 

 ( ) ( )
, , , ,

ˆ ˆ( ) ( )n n n nV Q t A t Vθ θ
β ∞ β ∞= ∆ + β ∆  (18) 

concerning marginal incomes , ,nV β ∞ , however, ˆ ( )nQ tθ ∆  and ˆ ( )nA tθ ∆  are assumed to 

be known. Having the solution of the system, , , ( )nV β ∞ θ  will be obtained so that it 

unambiguously assesses control θ . Hence the name of the unit is the Estimation 

Control Unit. 
In the second unit, the ICU concerned with the fixed values of limited income, 

for example, that are zero or obtained in ECU (, , , , ( ))n nV Vβ ∞ β ∞= θ , for all i  
strategies ′θi  are defined so that maximize the criterion 

 ( )( ) ( )
0

1 ˆ ˆ( ) ( ) maxi i

i
n nV Q t A t V

t
θ θ

θ
= ∆ + ∆ →

∆
 (19) 

If we solve the problem of maximizing (19) for all 1, 2,i   ..., L= , we will ob-
tain control 1 2( , , ..., ),N

′ ′ ′ ′θ = θ θ θ  which gives an income limit not less than control 
θ , to which limit incomes , , ( )nV β ∞ θ  correspond. 

As in the previous section, a bunch of ECU and ICU as amended by auxiliary 
units  and a unit of the choice control unit (CCU), the choice of limit incomes unit 
(CLIU) and cycle organization unit (COU) forms the Howard iterative algorithm. 

The algorithm starts working with either the CCU or CLIU. In the first case the 
limit incomes iv ,,∞β  i∀  are found in the ECU on the assumption that the selected 
in the CCU control ,θ  ( )ˆ θ

nQ  and ( )ˆ θ
nA  are formed. 
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Using the founded values of iv ,,∞β  in the ICU we attempt to find control 
′

θ  

which maximizes criterion (19) for each Li  ..., ,2 ,1=  and thereby improving con-

trol θ.  If it succeeds, i.e. ,′θ ≠ θ  the ECU and ICU cyclically finished through the 

COU, otherwise the COU stops the iterations, and result θ  obtained along with 

)(,, θ∞β iv  is announced to be optimal, i.e. 
*

θ θ.=  
If the algorithm starts from the CLIU (for example, the limit income for all i  

and control θ  are equal to zero), then in the ICU control 0′θ ≠  is determined and 
an iterative process is organized through the COU. 

Example 2. Let us suppose that the system «producer» is planning to give a dis-
count on freight. Let us consider a logistics system, consisting of =M 9 QS and the 
number of requests is =K 8, ,55.0=β  1=∆t . The number of states is 

12870
19

189 ==
−

−+CL . Therefore, we must consider two strategies: 1) to make a dis-
count on freight, 2) not to make discounts on freight. However, this may change 
other factors as well. Let the vectors of systems incomes per time unit, depending 
on the strategy be: 

( ) ( )6,7.5,4.3,7,4,2.6,9.1,5,4.31 =θr  

and ( ) ( )9.6,7.5,6.4,8,5.0,9.6,5.2,9.0,6.42 =θr  

The matrix of requests transitions probabilities between network QS be as fol-
lows: 



























=θ

000000100
000000100
000000100
000000100
000000100
000000100
00000005.05.0
1.07.02.0000000

00055.01.035.0000

)( 1P  



























=θ

000000100
000000100
000000100
000000100
000000100
000000100
000000055.045.0
35.04.025.0000000
00035.03.035.0000

)( 2P  

 
and the matrixes of one-step incomes for the request transition between the QS 
respectively are: 
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( )



























=θ

600000300
09.50000100
008.4000800
0002.700400
0000003.800
000006.5600
00000017.53
3.808000000

00012.86004.3

1R  and 

( )



























=θ

9.500000300
05.500001.500
006.40008.600
0005.600400
000025.001000
000009.6600
0000005.273
308000000
000126006.4

2R  

 
The intensity of requests service in the systems under these strategies are 

respectively the following: 

( )31.0,62.0,73.0,4.0,02.0,5.0,41.0,5.0,7.0)( 1 =θµ   

and ( )19.0,5.0,56.0,47.0,41.0,7.0,36.0,5.0,6.0)( 2 =θµ  

According to the Howard iterative algorithm taking into account revaluation,  
the following strategies ensuring at ∞→maxT  maximum limit income obtaining 
are optimal. 

 

Table 2 

Choosing strategy in LS depending on initial state of network 

Network states 
Result of strategy 

choice 
 Network states 

Result of strategy 
choice 

)0,1,0,0,0,2,2,0,3(  1  )0,4,2,0,0,1,1,0,0(  2 

)1,0,0,0,0,2,2,0,3(  2  )1,3,2,0,0,1,1,0,0(  2 

)0,0,0,0,2,1,2,0,3(  2  )2,2,2,0,0,1,1,0,0(  1 

)0,0,0,1,1,1,2,0,3(  2  )3,1,2,0,0,1,1,0,0(  1 

)0,0,1,0,1,1,2,0,3(  2  )4,0,2,0,0,1,1,0,0(  1 

)0,1,0,0,1,1,2,0,3(  1  )0,5,1,0,0,1,1,0,0(  1 

)1,0,0,0,1,1,2,0,3(  2  )1,4,1,0,0,1,1,0,0(  2 

… …  … … 
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3. Comparison of three methods for solving optimal control problems 

Considering the optimal control problem of an HM-network with incomes, three 
methods were used. They are: the method of complete enumeration of strategies 
[1], dynamic programming method and the Howard method. The applying 
conditions of these methods are shown in Table 3. 

Our calculations for various HM-networks have shown that the method of 
complete enumeration for the solution of an optimal control problem has solved it  
almost three times faster than the Bellman method of dynamic programming. How-
ever, the method of dynamic programming allows one to more clearly show the 
choice of strategy at each intermediate interval, and using the method of complete 
enumeration, the strategy choice is carried out for the whole considered time inter-
val. 

Table 3 

Applying conditions of methods for solving optimal control problem 

Method of 
solution 
 
 

Control 
Horizon 

 
Method of complete 

enumeration 

Bellman’s dynamic 
programming method 

Howard method 

Consideri
ng 

revaluatio
n 

Without 
consideri

ng 
revaluatio

n 

Consideri
ng 

revaluatio
n 

Without 
consideri

ng 
revaluatio

n 

Consideri
ng 

revaluatio
n 

Without 
considerin

g 
revaluation 

Infinite + + – – + – 

Finite + + + – – + 

 
We have also discovered, that the method of complete enumeration is about one 

and a half times faster than the Howard method to solve the problem. However, 
with an increasing number of control strategies, the process of solving a problem 
by the complete enumeration method becomes more difficult, therefore it is better 
to obtain results by using the Howard method. 
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