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Abstract. In the paper, an unbounded blackjack type optintwdmng problem is consid-
ered. A decision maker (DM) observes sequentidley talues of an infinite sequence of
nonnegative random variables. After each obsematiee DM decides whether to stop or
to continue. If the DM decides to stop at a gimemment, the obtains a payoff dependent
on the sum of already observed values. The gréaesum, the more the DM gains, unless
the sum exceeds a given positive number. If soddwsion maker loses all or part of the
payoff. It turns out that under some elementaryuiagdions the optimal stopping rule
(OSR) for such a problem has a very simple, sedathreshold form. However, even in
very simple cases, the value of the problem hasloged analytical form. Therefore, it is
very hard to evaluate the value directly. Thusprider to find the relationship between the
problem design parameters and the value of thielgymg is proposed studying the relation
via Monte Carlo simulations combined with regressenalysis The same approach is
adopted to examine the OSR risk characteristics.

Introduction

The “blackjack type problem” (BTP) models a clag®ptimal stopping deci-
sion tasks in which the decision maker observesesgally the values of a given,
maybe infinite, sequencg, X,, ..., Xy, ... of nonnegative random variables. After
each observation, the decision maker (DM) decidasther to stop or to continue.
If the DM decides to stop at momdgthe/she obtains a payoff dependent on the
sum Xi+...+X,. The greater the sum, the more the DM gains, antke sum
exceeds a given numbe@r- a limit given in the problem. If so, the DM Iasall or
part of the payoff. Such problems can represeniowarreal world situations,
which can be observed in engineering, economiogntie or social life, see e.g.
[1, 2]. To illustrate the class of problems, let amnsider a problem dbading
adevice with a limit of load bearing capacity. Many types of machines (trucks,
cranes etc.) or other engineering structures (asatams, roofs, bridges, computer
servers) may be subjected to excessive overloaddting in possible breakage of
the mechanism or structure. Assume a DM obseredotiding process of such
a device. During the loading process, the loadéseiased in random steps, as for
example during a flood (a dam) or heavy snowfatio@f). Assume that the limit of
the load bearing capacity of the device is givefterAeach observation, the DM
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decides whether to stop or to continue the prooé$sading. The DM wants the
device to bear as much load as possible. Howerghaother hand, if the limit of
the load bearing capacity is crossed, then the fgaithe DM is dramatically de-
creased.

The name of the class of optimal stopping problé&nsken from one of the
most popular casino table card gani&glackjack type games are played on a points
system that gives numeric values to every card single deck of playing cards.
The cards are given to a player sequentially Ungtidecides to stop. The score is
the sum of the values in his hand. The player withhighest total score wins as
long as it does not exceed a given limit. If a play cards exceed the limit, then
the player loses and his/her bet is taken by théede

Optimal stopping problems form a class of optimatproblems with a wide
range of applications in mathematical statisticgireering, industry, economics,
and mathematical finance. The most interestingubtele.g. job-search and house-
hunting problems, see e.g. [3-6], engineering antdputer systems maintenance
and/or management [7, 8], the pricing of perpefirakrican options as well as the
optimal timing to invest in a project or capitafigian asset [9-12].

In the theory of optimal stopping, see e.g. [3,tAg solution of any optimal
stopping problem consists of the optimal stoppulg (OSR) and the value of the
problem, i.e. the greatest expected payoff possibéehieve. In the case of a finite
horizon, a solution for BTP satisfying some genassumptions is given in [1]. It
appears that the OSR has a relatively simple tstreicHowever, the dependence
between the expected gain and the design paranaétérs problem is rather com-
plex. Even more complex is the relation betweesdhmrameters and the value of
the problem in the case of an infinite horizon. fkmes important problem is to
describe the relation between various risk charestics of a given OSR and the
parameters of the stopping problem. There is ntytaca expression relating the
design parameters of the decision problem to theesponding performance char-
acteristics of the decision rule. Usually in theeavhen the relationship between
some dependent and the independent variablesrsmesly complex or unknown,
the Monte Carlo simulations approach can be adoptee e.g. [2, 13-15].
However, the Monte Carlo methods allow us to savepecific given problem
rather than to obtain some general expressiongidesrthe relation in which we
are interested. Thus in order to obtain some rgereral results we propose com-
bining the Monte Carlo method with regression asialyvhich enables us to esti-
mate and express analytically the relationship twkie are going to study with the
help of computer simulations.

The paper is organized as follows. In the nextiseate formally state a gene-
ral BTP and recall some important definitions frtira theory of optimal stopping.
In Subsection 1.3, we define the considered riskkatteristics and in Subsection
1.4, we describe a specific BTP which will be studin detail. In Subsection 2.1,
we describe the Monte Carlo experiment which weinisgder to obtain data con-
taining the information about the relations betwedlea risk characteristics and
design parameters of the BTP. Next, we adopt regmnesnalysis in order to obtain
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approximations of the analytical expressions netathe value of the problem as
well as the risk characteristics with the desigrapeeters of the considered BTP .

1. Formal statement of problem

The formal model for the class of problems we adesin the paper is the fol-
lowing. LetXy, X;, ... be an infinite sequence of random variableBM\observes
sequentially the values of the variables and dscideether to stop or to continue.

If the process is stopped at momknthe DM gains valuav(y + Z:‘zl X;), where

W is a given real function and> 0 is the initial state of the process. Functgis
positive and nondecreasing on the intervalT{0and is nonincreasing for argu-
ments greater thah Such problems will be calldalackjack type problems (BTP)
if the random variables amonnegative and payoff functionV achievesits only

maximum fory + YK, X; =T.

Our task is to find a stopping rule which maximizbe expected payoff for
a decision maker.

1.1. Optimal stopping theory - necessary definitions and results

Before we present the problem considered in thempap need to present some
necessary formal definitions from the theory ofimpd stopping. They can be
found e.g. in [3, 4].

Let X, X, ... be a sequence of independent random variabd§,, denoteo -
algebra generated by random variabigsx,,...,. X, in an underlying probability
space @ F,P) A stopping rule is a random variable with values in a set of natural
numbers such thatr{= n}0 F, forn = 1,2,... and P{< o) = 1. LetM(n) be
a class of all stopping rule@ssuch that P{<n) = 1.

Let (Y,,Fn), n=1,2,..., be a homogenous Markov chain with valuea state
space Y , B). Let W:R, - R be a Borel measurable function whose vaég)
will be interpreted as the gain for a DM when ch@in,F,) is stopped at state
Assume that for a given stagend for a given stopping ruke expectatiorE W(Y,)
= =E(WY)|Y1 = y) exists. ValueEW(Y,) is the mean gain corresponding to the
chosen stopping rule

Let us define a functiow,, by the equation:

Vn(y) = sup EyW(Yr) (1)

My (n)

whereMy(n) is the set of all stopping rules belongingMdn) for which expecta-
tions EW(Y,) are larger tharoo for all yO Y. ValueV, (y) is called avalue of the
problem of optimal stopping when thaitial state of the process iy and the
boundary (horizon) for the possible number of stephlis
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Stopping ruler* 0 M(n) which for ally(lY satisfies the condition

EVY) = V() )

is called aroptimal stopping rule in classMy(n).

Now let us consider an unbounded problem. Mgt denote the set of stopping
rules satisfying the conditions: £ «) = 1 andE\W(Y;) > —oo for all yO Y. The
value of such a stopping problem is denoted/fy and the stopping rule which
satisfies a condition analogous to (2), withreplaced by, is called an optimal
one in clas$ .

1.2. Certain unbounded blackjack type problemsand their solutions

The following proposition providing us with a sdbnt for bounded BTP is
proved in [1].

Proposition 1. If there exists real numbéfr, 0 <t* < T, such that
W(y) < EW(Y,) for O<y <t

and 3)
W) > EW(Y,) fory > t*

then OSRr, in classMy(n) for the BTP is given by

7, =minfl<k<n:y, >t} (4)

Value V,(y) of the problem can be calculated jor t*, with the help of the fol-
lowing recursive equation:

V. (y) =j:_yvn_1(y+x)f(x)dx +j:_yW(y +X)f()dxn=2,..N (5

with the initial conditionV,(y) = J.:W(y +Xx) f (X)dx.

We see that the above OSR is of the so-calleditblgdype. Such OSRs are
especially practically interesting because of theiry simple structure, compare
[16-19].

Now let us consider an unbounded version of sugtoblem. It follows from well
-known theorems that under some assumptions, unkduaptimal stopping rule
r* can be approximated by bounded optimal stoppirigsrr;. One of these theo-

rems, see Th.11, p. 77 in [4], states that ifpagoff function is bounded, then
r =limr,
n- oo

and
V(y)=limV,(y) (6)
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It results from the definition of the BTP that wotlt the loss of generality, we
can assume that the payoff function is boundedsThe above mentioned theorem
yields the following proposition.

Proposition 2. If conjunction (3) is satisfied, then the OSR in clddsy for the
BTP is given by

r =min{l<k:Y, 2t
Condition (3) is fulfilled in many practically iatesting problems, for examples
see [1]. One of such problems will be consideredeitail in the sequel.

1.3. Important characteristics of OSR

In the situation where we deal with decision makimgler uncertainty, the most
important for the DM features of any decision rate the expected payoff and the
risk characteristics.

It results from the two above propositions thatueaV,(y) of a bounded prob-
lem can be computed with the help of recursive gong5). However, usually the
calculations are extremely arduous, even if we mades of some symbolic mani-
pulation software, such &daple, Mathematica or Maxima, see [1, 2]. In the case
of an unbounded problem, there is not even oneaseeuformula to calculate the
value. The same problem is connected with the Tibk.theory of optimal stopping
hardly provides us with any results devoted to asly measures connected with
the optimal stopping rule.

In general decision theory there are two basicaygeisk concepts:

— risk connected with the variability of results andua specific value of payoff
— risk connected with the possibility of occurrenéeiedesired results.

For the BTP, two risk characteristics reflectinghbabove risk concepts were
proposed in [2]. LeZ bethe random payoff connected with optimal stoppiulg r
T*, i.e. Z= W(Yp). Let gz denote the standard deviation of optimal paybffhe
following risk measures connected with rule O8Ruwill be considered in the se-
quel:

— ratio SV of standard deviation of random payoff to expegiagloff, i.e.SV =

= az/Vn(0)

— probability of failurePrF, i.e. probability that the process under contrdl w
cross limitT.

In the sequel we deal with the problem of modelihg expected payoff as
well as the two risk characteristics for the unbechBTP. We combine the Monte
Carlo method with regression analysis to estimatkexpress analytically the rela-
tionship between the design parameters of the BioRtee indicated characteristics
of the OSR. The BTP we will study in detail is d&sed in the next subsection.
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1.4. Blackjack type problem with linear payoff and exponential step

In the sequel, the following BTP will be consideiadletail. Let the DM observe
a sequence of i.i.d. random variables having aromemptial distribution with the
density function:

(1) =Pl Moy €), 4> 0 (8)

Therefore, in this problem the DM approaches limitith exponential steps of an
average lengthi.
Let payoff functionwW be given by the following equation:

B Oy, y<T
W (y) { 0. yot (©)
with B> 0.

According to formula (8), the DM obtains a positipayoff which is propor-
tional to statey of the process, unless the state is greater thnT. If so, then the
player gains 0.

It was shown in [1] that such a problem satisfies ¢ondition given in Proposi-
tion 1 with

t=T-A In(1+%) (10)

the OSRr* given by (7) tells us to continue the observatimlong as the sum of
the initial state and already observed values doegxceed the above given value
t*.

This particular subclass of BTP models an imporfamattical decision task con-
nected with the theory of mass-service and cabedce with work time limits, see
[1, 2].

2. Monte Carlo simulations and regression models

In this section, we describe the Monte Carlo expernit and present the results
of the regression analysis applied to the obtadsd.

2.1. Monte Carlo experiment

The idea of the Monte Carlo simulation is to dranple{Z}} i.e. a realiza-
tion of stochastic proces<{Z,,...Z;} composed of independent and identically
distributed random variables having the same bistion as random optimal pay-
off Z= W(Y,p. Letf be any Borel functioior which expected valuef@&) exists.
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By the strong law of large numbers, averaf'g;@:%z{ﬂlf(zi)will almost surely

(a.s.) converge to &#2). In particular, whem tends to infinity, we have

Zy=2TLZ, T E@)=Vy ()

S2=L3M (2 ~Vy(y) MH o2
m (11)
and
M 1m :
o :Ezi:ll(-m,a] (Z)) @ PrZs<a)

In the latter expressio is the number of the values in the Monte Carlo-sam
ple which are not greater than
In our Monte Carlo simulations, the realizationsraidom optimal payofZ are
generated directly according its definition witle thelp of the following procedure:

Set z=y;

While y<t* Do Set z=z+REX(A)
If y<T Set WeBz

El se Set WO

Return W

In the above procedure, function REBXfeturns a pseudorandom number gen-
erated according to the exponential probabilityritistion having the density func-
tion given by (8)t* is given by (10). We use the procedure to estirtiegevalues
of the problems for various design parameters dsaseother statistics characte-
ristising the performance of the OSR.

2.2. Design parameters of the problem

The design parameters of a given BTP as stategctioa 2.1 are the following:
limit T, parameterA determining the step probability distributi@nd payoff func-
tion parameteB. Let us assume that initial statef the process equals 0 and let us
confine ourselves to these situations where theevaf problenV(0) is positive. It
reflects the case where the optimal stopping rlle the decision maker to make
at least one observation.

It appears, see [2], that it is very convenientaasider a parametd& which
equals ratiol/A and can be interpreted as the average nhumbeeps steeded to
cover distancd. It allows us to obtain more general results. Beeathe optimal
stopping rule is independent Bfand the expected value of the payoff as well as
the value of the problem are linear functionsBofwe assume in the sequel that
B = 1. What is more, to obtain an even more genegatription, we model the
ratio
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_V()

instead of modeling the problem value alone. Thuallfy, we have one indepen-
dent variable for our models - paramefer

2.3. Monte Carlo estimation of the value of the problem

It was shown in [2] that the Monte Carlo approxiimas of the value of the
problem in the case of bounded versions of the B/EPvery accurate. The average
relative error of these approximations was aboB¥d).see [2]. Thus one may ex-
pect the same in the case of the unbounded BTPV{%tR"" denote the Monte
Carlo estimate of the valuds andR respectively. We compute the estimates of
W€ and RY for the values of paramet& changing in interval [1, 30]. In our
Monte Carlo simulations we assumme= 10 000, compare (11), and for each num-
berK limit T is chosen at random from interval [50, 250]. Next adopt the re-
gression analysis to obtain an analytical modeidtirgd ratioR given by (12) and
parameteK. The resulting model has the following form:

ﬁ0+ﬂl/K+ﬂ2K+ﬂ3K2’ A<d
B+ Bl K+ BK + BK?, A>g

with the followingleast squares (LS) estimatedy; for the unknown coefficients,
i=0,...,8:

by = 31.1854p; = -11.2167 b, = 11.5469,
b; =-0.917678pb,= 79.6558ps = —94.3583,
bs = 0.6659)p;,=-0.00867, g=4.8924.
100r
[%]
R

R(K) ={

60

10 20 30 Kk

Fig. 1. Graph of model for ratif (in %) as function oK and Monte Carlo approxima-
tion of values obtained fd¢[1 [1, 30] (dots). Regression values and their appratons
are almost the same - they can hardly be distihgdisn the figure
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Figure 1 shows both the data obtained by the MQatdo experimentas well
as the graph of a model for rafoestimated on the basis of the Monte Carlo data.
We see that the model values and the Monte Capoogpnations can hardly be
distinguished.

Now, to study the quality of the approximations @mmpute the average rela-
tive errorRE between our model and of the Monte Carlo approtiona.
The formula forRE is as follows:

_ 1w MC
RE —Nziﬂ‘R(Ki) -R (Ki)‘/ R(K,) 3)
To compute RE, we generate another Monte Carlo lgafoplled in the sequel
avalidation set) containingN = 4000 records. The value &E obtained for our
data is 0.00288, and its value confirms that tigeagsion model is really good.
In the next part of the paper, we adopt this apgrda build models for the risk
characteristics of the optimal stopping rule.

2.4. Regression modelsfor risk characteristics

Model risk characteristics are developed on theukitions described in the
previous subsection.

First we present the model for ra®. We assume the following form of the
regression function:

B, + B K+ LK +BK?, A<g
Byt B! A+ BsA, A>g

Based on the Monte Carlo data, we obtain the foligu.S estimatesy, of un-
known coefficients3, i = 0,...,6:

S\/(K):{

b= 0.6948b, = 0.508183p,=-0.11354 pb;= 0.00980p,= 0.212579,
bs= 1.3666bs=—-0.00260g = 4.9530

The model function graph along with the data ispngéed in Figure 2.

To check the usefulness of the regression modelcavepute theRE given
by (13) (withR replaced withSV) based on the validation set. The average relative
absolute errorRE equals 0.63%. It confirms good quality of the rasgren
model.

Figure 3 illustrates the dependence between thieapitity of failure PrF and
parameter K. The continuous line represents the graph of dggession model
obtained in our studies. It has the logistic forireg by the formula:

Exp(PF (K))
1+ Exp(PF (K))

Prr(K) =
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0.2 :

10 20 30 K

Fig. 2. Graph of estimated regression func#®i{continuous line) and Monte Carlo
estimates foBV (dots) wherK[[1, 30],andm= 10000. Parametér was chosen at ran-
dom from interval [50, 250]

0.5¢
PrE

0.25-

10 20 30 K

Fig. 3.Graph of estimated regression functin (continuous line) and Monte Carlo
estimates foPrF (dots) wherkK[1, 30],andm= 10 000. Parametdrwas chosen at
random from interval [50, 250]

FunctionPF appearing in the above formula is of the form:
PR(K) =4+ B K+ 5K +BK?
with the followingLS estimates for unknown coefficiefit

bo=-1.2932b,= 1.4272,= -0.05456 b;=-0.0101

The relative prediction error in this case (compub@ the basis of the valida-
tion set) amounts to 0.00776. The regression moeldébrms really well.
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Final remarks

The Monte Carlo experiments - as all computer sitimhs - are subject to
a similar weakness; the results may depend on pkeif&c experiment design.
Thus, we propose here to combine the simulatioh véagression analysis to gen-
eralize the results for an arbitrary set of possibésign parameters. With the help
of the proposed approach we develop models fovdhge of an unbound black-
jack type optimal stopping problems with a lineaygff and exponential step as
well as for the risk characteristics of the OSRe Tinodels allow the decision mak-
er to study the risk characteristics of the OSRafavide range of design parame-
ters. The estimated prediction errors appear teeg small, which indicates that
the approach results in the analytical models whiehvery good approximations
of the true relationship.
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