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Abstract. Heat transfer through dense granular interfacesdd by squares or triangles

with randomly assigned thermal conductivities iscdssed. The effective thermal conduc-
tivities of the interface are found by means ofsteady heat flux induced by connection of
interface with the external heat source assuriegtinstant value of boundary temperature.
Some statistical properties of effective condutiggi are also presented.

I ntroduction

In many situations of engineering and applied nmatkt&s interest one is con-
fronted with energy transport in heterogeneous umdEspecially, transport phe-
nomena within granular media, such as sound prdjoaigdneat transfer or electri-
cal conduction, are of great industrial importantieey display many astonishing
properties such as slow relaxations, stochasticentrfluctuations, percolation.
These properties can be due to the extreme setysdithe inter-grain interactions
to details of granular packing and to the naturehef grain surface. The micro-
structure of a granular medium is the main feathat makes these heterogeneous
materials different from their homogeneous courgtggy For granular materials the
magnitude of effective conductivity depends onghgace roughness, the type of
material, and the interface pressure [1-3].

Numerous researches in the area of granular heeadfér, use the effective me-
dium approximation (EMA). This approach provided¢waate solutions of steady,
averaged temperature profiles using detailed chexriaation of the microstructure
[4]. Within EMA, the heat transport through a heggneous medium can be ex-
pressed via classical continuum relation

(T %—I =, 07T (1)

The mean system’s temperatureTiand A, is the so-called effective thermal
conductivity,c(T) is the volumetric specific heat. Equation (1)resents a kind of
operational point of view when a system is congdeaas a black box whose input
and output are characterized by different tempeeatandA,, aggregates all local
information about the sample details. In this cgucd, reveals an ability to the
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heat propagation with no macroscopic mass trariséerlD system of length and
cross-sectiom, the thermal conductivity can be defined by meafrthe stationary
flux q of energyQ = AJ, induced by connection of the system to thermesiat
suring the temperature difference equAlB. This energy flux is proportional to
AT and its value is expressed by the formula

Q(L,AT)=/\LAT€ (2)

For finite lim__, lim,;_, A, <o, we have the normal conductivity and the sys-

tem satisfies the Fourier law. Thus the effectivermal conductivity is given by
the following expression

Age =lim | limyr AL =w(geometry;lndmateriatjetaiISEAiT 3)
In a case of the simplest geometry one obtains

_ _LQ
Y=LIA - A4 A QE 4)
where:Q is the amount of heat transmitted in a directienppndicular to the sur-
face A due to the temperature differed€E. Here, the steady heat flow is as-
sumed, of course.

An ensemble of geometrically identical grains widmdom transport capabili-
ties yields the effective transport properties dfole grain ensemble highly de-
pendent on details of the arrangement of the dgramikection. The influence of
particle shape on heat propagation through a ggamoédium in the state of ran-
dom packing is discussed. We use Thermal PartigieaBics (TPD) simulation
technique which allows to compute transport praperof granular system under
static condition [5]. The main advantage of TPOHhat by incorporating contact
conductance theories simultaneous two-body intierasimay be used to model the
heat transfer in a system composed of many pasticle

Here an example of two dimensional granular interféormed by identical
squares or by equilateral triangles is considess# (Fig. 1). For each of these
shapes the grains are characterised by the theandlctivity coefficient, taken
to be random with two-point distribution function.
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Fig. 1. Granular system consists of equilaterahgles, two colours correspond to two differ-
ent values of the thermal conductivity coefficieotd. The values of are assigned randomly
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1. Mathematical formulation of the problem

The system is structurally heterogeneous with rgpethe thermal conductivi-
ty coefficients.
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Fig. 2. An example of the grid for the nodal tengtere computations. Only one cell and
its neighbours are shown

The detailed numerical procedures concerns the dwatuctivity is presented
by Majchrzak and Mochnacki [6]. Here, this procedlis used to calculate the
nodal temperatures of the grid shown in Figureshgithe formula corresponding
to the Laplace equation

U TN

where the curly bracket emphasises the stocheatiicenof thermal conductivities.
An effective thermal conductivityly, is the global property of the material

which reveals an ability to heat conduction withmeed of any macroscopic mass
transfer. The effective thermal coefficient is cargd using the Equation (3),
within a statistical ensemble of grain arrays widmdomly distributed values

of A. In this statistical approach an estimated valn@TQ is the mean value|
of the probability distribution ofd, numerically computed for an ample set of
samples

Ja =y 2 D) =rar Z o)) ©

N i=1,..N
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Wherew({ A}i) represents the particular realisation. afistribution within the one
member of the statistical ensemble.

2. Examples of numerical calculations

Two numerical experiments: with square-shaped ah tiangle-shaped grains
have been realized. For each of this experimentsomstructed the macroscopic
samples using about 50x50 grains with randomlygassi values oft and we

computed the correspondindy, according to the Eqg. (3). Thus, for these two ge-

ometries we obtained statistical ensembles, eat akiout10® samples for all
values of p=0.1,0.2,.. 0.5, wherep is the parameter defining the random two-
point distribution of2. Figure 3 shows one of the member of statistiosemble
for square-shaped grains and the distribution eftémperature within the macro-
scopic sample when the steady state is attained.

Fig. 3. Square-shaped grains with 5 andl = 1 form the macrospcopic
sample. Temperature distributions correspondot? =5) =0.4,0.€ and 0.8
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The corresponding probability densiﬂ,(/ieﬁ) is presented in Figure 4. This is
the normal distribution centered &f, = 0.65.
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Fig. 4. Probability densit)P(AEﬂ ) for an array of 50x50 square grains with random
values of A, =1 and A, =5, and p(4,) =0.4. A, is computed with 5- F@amples

We have computed the mean valuéeﬁ according to Equation (5) and the
corresponding distribution is presented in Figure 5

Fig. 5. (Aéf - p) curve for square-shaped (squares, c) and trisstgiped (triangle)
arrays of about 50x50 grains with random valuesipt 0.2 and A, = 20. Points cor-
respond to the values oﬁeﬁ averaged over 2Gamples
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Conclusion

In this paper we have reported results of the EMpraach to the heat transfer
through the interfaces formed by mixtures of micogsc grains with randomly
assigned “microscopic” thermal conductivities. Wavdr analysed numerically two
types of interfaces: consisting of the densely pddquare-shaped grains only and
these with the triangular grains exclusively. Weehalso assumed the perfect inter-
grains heat contact. The obtained distributionthefeffective thermal coefficient
does not depend visibly on the grains’ shapes. iEhisie to the perfect grins’ pack-
ing of an ample number of grains. In such circumsta the randomness is intro-
duced only by variation of the grains “microscopudiaracteristics and thus the
system behaves as the collection of point-like cbjerhe shape of grains will play
a pronounced role if we introduce another phadbdasystem apart the solid state
grains’ phase. This can be achieved e.g. by intiodu the liquid or gaseous medi-
um between the grains.
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