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Abstract. In this article we consider special classes ofginelated to finite partially
ordered sets over division rings and prime heregidoetherian rings. The structure and
main properties of these rings are studied. @he®s are closely connected with right
hereditary SPSD-rings.

I ntroduction

One of the main goals in the ring theory is to rElin a certain sense the de-
scription of large classes of rings to simpler stasby use of some ring theoretic
constructions. The best classical example is thedd&rburn-Artin theorem de-
scribing semisimple Artinian rings in the formdifect sums of matrix rings over
division rings. There are other interesting camgtons of rings among which are
incidence algebras.

The incidence algebra of a locally finite partiatlered set (abbreviated poset)
over a field was first introduced by Rota [1]. Latieis notion was extended to the
case of commutative rings. The most complete in&tion about incidence alge-
bras over commutative rings can be found in th&klmfoSpiegel, O'Donnell [2].

In this paper we consider special classes of niagged to posets over associa-
tive rings (not necessary commutative). These riceys be considered as some
generalization of incidence algebras. In sectiomeldefine and study the proper-
ties of incidence rings of finite posets over disisrings. The special class of right
hereditary rings connected with finite posets aisdréte valuation rings (not nec-
essary commutative) are considered in section 2.

All rings considered in this paper are associatwth identity and all modules
are unitary. We refer to [3] and [4] for generalteral on theory of rings and
modules.

1. Incidencerings. Rings T(S, D)

Consider a special class of rings related to go3éiese rings are particular ex-
amples of incidence rings.
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Let S = {04, 0y,...,0,} be a finite poset with a binary ordering relatw, andA
an associative ring with identity. A finite posetcan be represented by tHasse
diagram which is a directed graph with the set of vedidd, 2,...n} and the set
of arrows given by the following way: there is amowv o: i — j (i #]) if and only
if a; <a;, and moreover ifo; < oy < ; then eithek =i ork =j.

A poset P = {a,b,c,d | a<b<d; a<c<d} whose Hasagrdm has the following

form:
. / \ @

is called ahombus.

Denote byS a non-oriented graph obtained from the Hasse aliagf S by de-
leting the orientation of all arrows. Then it issgao show that a non-oriented

graph S is a tree if and only if S contains no subposdtsse diagrams are rhom-
buses.

Note also the well-known fact that a finite poset §,, a,...,a,} with an or-
dering relation< can be labelled so that; < a; implies i <j.

Definition. Theincidencering of a poset S over an associative (not necessary
commutative) ringA with identity is a subring I(SA) of the generalized matrix
ring Mn(A) such that thei f)-entry of I(S,A) is equal to O ifa; < a; in S.

It is easy to show that a poset S can be labelledch a way that a ring 1(3)
Is isomorphic to a ring (S, A) which is an upper triangular ring. In particulgr,
a poset S is a linear ordered set then AjS] T,(A).

Recall that a ringA is semiperfect if any finitely generatedd-module has
a projective cover. Aring isright hereditary if each right ideal oA is projective.

The following theorem gives the main propertieshefring I(SA).

Proposition 1.1. LetS = {ay, 0,,...,a,} be a finite poset, and A an associative

ring with identity and Jacobson radical R. Then

1) I(S,A) is semiperfect if and only Kis semiperfect

2) The Jacobson radical &S, A) is a set of elements {6, A) for which the(i,i)-
entry is inR;

3) I(S,A) is right (left) Noetherian if and only if A is rigt{teft) Noetherian

4) I(S,A) is right (left) Artinian if and only if A is righ{left) Artinian.

Proof.
1) follows from [3, theorem 10.3.8].
2) follows from 1) and [3, theorem 11.1.1].
3) and 4) follows from [3, theorem 3.6.1].
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Now consider a particular example of the incideriags when a ringh =D is
a division ring. We denote this rin(S, D) and as mentioned above there is
a numbering of S such that the ringS, D) O T,(D). In what follows the ring
T(S, D) will be always assumed to be an upper trianguiliag.

From proposition 1.1 we immediately obtain thedwling statement.

Proposition 1.2.

1.T(S,D) is an Artinian semiperfect ring.

2. The Jacobson radicd® of T(S, D) is equal to the prime radicall of T(S, D)
and the two-sided Peirce decompositiofRdfas the following form

eiRe = 0 and eRg =¢T(S, Dg, for i,j=1,2,...n; i Z]

Recall that a semiperfect rig with Jacobson radic& is reduced if A/Ris
a direct sum of division rings. From propositio2 it.immediately follows that the
ring T(S, D) is reduced.

Proposition 1.3. The ring TS, D) possesses a classical ring of fractions which
coincides with TS, D).

Proof. By proposition 1.2T(S, D) is an upper triangular Artinian semiperfect ring
with the Jacobson radicRlwhich coincides with the prime radiddl It is easy to
show that any regular elementf T(S,D) has the following form

r = diag(dy, d,...,d) + X 2)

where eachd, is a nonzero element @ andx O N. ThereforeC(0) = C(N),
whereC(0) is the set of regular elementsfgfand C(N) is the set of elements Af
whose images are regular element8/iN.

Therefore from [5, theorem 3], it follows tha(S, D) possesses a classical ring
of fractionsT which is an Artinian ring. Since any regular eleteh T(S, D) has
the form (1.2), itis invertible ii(S, D), and sol =T(S, D).

A finite poset S is said to lmnnected if the Hasse diagram of S is connected.
It is obvious that the ring@(S, D) is indecomposable if and only if the poset S is
connected. Sinc& = T(S, D) is an Artinian ring it is possible to constrube
quiver Q[ of this ring. Recall that Q) = Q(T/R?), whereR is the Jacobson radi-
cal of T. LetP,=¢gT be a principal module of(S, D). Then the right quiver of
T can be constructed by the following way. If

2 o 0 ol
€ R/QiR 0 D Pj
=1
then in the quiver Q) the vertex is connected with the vertgby t; arrows.

Proposition 1.4. The quiverQ(T) of the ring TS, D) coincides with the Hasse dia-
gram of the poset S.



28 M. Dokuchaev, N. Gubareni

Proof. From [3, theorem 11.1.9] we can assume Thafl(S, D) is an indecompos-

able ring and so the Hasse diagram of S is coadetkt {;} be the set of all

matrix units of M(D) and 1 =e,;+ e,,+... +&,, a decomposition of the identity of

T in the sum of pairwise orthogonal idempotents. siier the diagram of S and

the following cases.

1. Assume that there is an arrow- | in the diagram of S, which means that
gRg = D and eRgx = 0 or ekRg = 0 for any integerk.

n
Then g; Rzejj = kz—:1Qi Rexk [k Rejj = 0. Therefore there is exactly one ar-
rowi — j inthe quiver QI).
2. Assume thai; < a; and there is no arrow of the foim- j in the Hasse dia-
gram of S. This means that there is a positivebarksuch thag;Rgy,= D or
a«Rg =D. Then

n
& Rejj = kglf%i R (e Rejj =D

and thereforeg; Rej / g; Rzejj =0, i.e. in the quiver Q) there is no arrow
i - .

Conversely, suppose that there is an arrow- j in the quiver Q). This
means that there is an exact sequence

n
=1

ThereforegiRg # 0 which means that; < a;, and there is an arrow- j in
the diagram of S.

Proposition 1.5. The ring TS, D) is two-sided hereditary if and only if the Hasse
diagram of S is a tree, i.e. a posettontains no subposets which diagrams are
rhombuses.

Proof. Let T =T(S, D) be a hereditary ring. Assume the diagram of Sitains
subposet which diagram is a rhombus. This meansTticantains an idempotent
e such that the ringgTe= B, where

O o oo
o o U O
©oO U oo
O O 0O O
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This is impossible, since the rirg)is not right hereditary, and any minor of
a right hereditary ring is right hereditary.

Conversely, suppose the two-sided Peirce deconmosif T does not contain
the minors of the fornB. Then the diagram of S is an acyclic simply lagedrer

with no extra arrows such that its underlying gré&Hhobtaining from S by delet-
ing the orientation of the arrows) is a tree. Franoposition 1.4 it follows that the
ring T can be considered as a path algebra correspomalittte graphS over
a division ringD. ThereforeT is a hereditary ring, by [3, theorem 2.3.4].

Theorem 1.6. The ring T= T(S, D) is an Artinian semidistributive piecewise do-
main.

Proof. Since for any primitive pairwise orthogonal idengiase, f O T the ring

(e+)T(e+f) is either of the forrr{D Dj or (D

0O D 0
by [3, theorem 14.2.1]. Denot& = T, i = 1,...n. Let$: P, -~ P; be a nonzero
homomorphism. The(ei a) = ¢(ei) a = gaei a whereay, a O T andgjage; is
a nonzero element frogTe; = D. Thusd, = gja,e; defines a monomorphism.
Therefore the ring is a piecewise domain.

Oj , Tis a semidistributive ring,

Theorem 1.7. If any subdiagram of the diagram of a poset S dastao rhombus-
es then TS, D) is a two-sided Artinian hereditary semidistributineg.

Proof. This follows immediately from theorem 1.6 andgsition 1.5.

Proposition 1.8. The ring T=T(S, D) is serial if and only if S is a disconnected
union of linearly ordered sets

Proof. Since the ring T is indecomposable if and onlyéf poset S is connected,
one can assume that T is indecomposable. If Sckgam, thenT = T,(D) and the
statement is obvious

Conversely, suppose thais a serial indecomposable ring. Then by propmsiti
1.6 the quiver of the rind@ coincides with the diagram of the poset S and, by
[3, theorem 12.1.2], itis a chain. Thus, S imadily ordered poset.

2. Right hereditary rings A(S, O)

Let O be a discrete valuation ring with a division rioigfractionsD and the
Jacobson radicdll. By [3, corollary 10.2.2]0 is a local Noe-therian hereditary
ring which is a right and left principal ideal doim&PID) andM is its unique max-
imal right and left ideal.
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Consider the ring

H) =M O O (3)
M M - O

which is a subring in the matrix ring D). Clearly, H,(O) is a Noetherian serial
prime hereditary ring. And so, by the Goldie theoré& has a classical ring of frac-
tions, which is M(D).

Let {O} be a family of discrete valuation rings (not nesary commutative)
with Jacobson radicaMi and a common division ring of fractioms fori = 1,

2,..k S ={ag 0y...,0,p a finite poset with a partial ordet; & = {ay,
Os,...,ai} a subset of minimal points ofS (k < n), and S= §0 S, where
S; = {01, Oszy -, 0}

According with this partition of consider thgposet Swith weights so that the
point i has the weightH,(Q), i = 1,2,..k; n O N; and all other points
j have the weighb.

Construct the ringA = A(S, S, S, O4,...,0¢ D, ng, Ny, ...,ny) (or A(SO), in
short) which is a subring of ¥D), s =n;+n+...+n, +(n-k) by the following way.
Let the identity ofA be decomposed into a sum of pairwise orthogomathfbtents
1=f+f,+..+f, and the two-sided Peirce decomposition have fdatewing
form:

n
A= [] fiAfj
i,j=1
where f; Af; =Hni (G) fori=1,2,..k fAf =T(S) forf = fi + ... +1fy;

and A; = fiAf is an @, Aj)-bimodule, forij =1, 2,...,n. Moreover, Aj = 0 if a;
<a; inS. Ifai<a; inSandy 0SS, a;0S, theneAf =D for anye I fi. So the
two-sided Peirce decompositionAhas the following form:

Hy(©) - O My

A= : . : : @)
O = Hp (O« My
O O T(Sl)

WhereMi isa(H n (G;),T (S1))-bimodule fori = 1, 2,...k; T(S;) is the inci-

dence ring of a poset; 8ver a division ring>. These rings were first considered
in [6].
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Proposition 2.1. Let{O} be a family of discrete valuation rings with a coomm
division ring of fractions D. Then(&8,0) is a right Noetherian semiperfect ring

Proof. Since the identity o = A(S,O) is decomposed into a sum of a finite num-
ber of pairwise orthogonal local idempoterksjs semiperfect, by [3, theorem
10.3.8]. From the facts that ai,, (O) are Noetherian ring3(S, D) is an Artini-

an ring, allM; are finite dimension vector spaces olerit follows thatA is a right
Noetherian ring, by [3, theorem 3.6.1].

Let N be the prime radical of a semiperfect ridgS,0). Then the two-sided
Peirce decomposition of has the following form

O - O Mg

S .
O - O My ®)
O - 0 N

whereN; is the prime radical of an Artinian rin(S;) which coincides with its
Jacobson radical by [3, theorem 10.3.8]. SiNgas nilpotent, by [3, proposition
3.5.1],Nis nilpotent, as well.

DenoteA, = AN andW = N/N°. ThenA =A, 0 N as a direct sum of two Abe-
lian subgroups and

Aofﬂlxﬂzxmxﬂk xT

whereA =Hp, (O)fori=1,..k T OT(S)/Ry =AcaxxAy; A =D
fori =k+1,...n. Thus we obtain the following statement:

Proposition 2.2. The prime radical of the ring (&,0) is nilpotent, and A/N is
a finite direct sum of prime rings.

Let 1= f; +..+ f,, be the corresponding decomposition of the idemwiitA,
in the sum of pairwise orthogonal idempotents.tBetcorrespondence between the
idempotentsfy,..., f, and vertices 1,..n,connecting the vertexwith the vertey
by an arrow if and only if ﬂ\/\/fj # 0. The obtained finite directed graph PQ{s

the prime quiver oA (see [3, section 11.4]).
SinceA, is a semiprime Noetherian ring, by the Goldie teeoit has a classi-
cal ring of fractions which has the following form:

Po = ApX..x Ay =Mp (D)X xMp, (D)XDx--:x D
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Lemma2.3. Let O be a discrete valuation ring with a divisidmg of fractions D.

(©) Tt;)}’ where M is a Hp(0),T(Sp))-

bimodule, has the right classical ring of fractiowhich is an Artinian ring and

has the following form
Z\ZLMn(D) M ] ©
O T&)

whereM =HM OH O; M, and H = M,(D).

H
Then the ring A(S,0) :(

Proof. Let 1 =e;+ e, be a decomposition of the identity Afinto a sum of or-
thogonal idempotents such tlegfe, = A; = H,(O) andeAe, = A, = T(S). Then

. X .
any regular element & has the following formm = [ L J wherer; is a regular
r2

element ofA; fori =1, 2 andk O M. SoC(0) =C(N), whereN is the prime radical
of A. Therefore from [5, theorem 3] and proposition i2fllows thatA has a clas-

sical ring of fraction A which is an Artinian ring. From the representatiof
a regular element d¥ it follows that there exist; L 0M,(O) and rz_l OT(S)

_1 _ -
such thatr™ = :(rlo ¥1] wherey = — rl_lxrz_l OM , which shows thah
r2

has the form (6).

Proposition 2.4. Let {O} be a family of discrete valuation rings with a ¢oon
division ring of fractions D. Then the rind 30 possesses a right classical ring of

fractions A which is an Artinian ring and has the form:

Mp (D) =~ O M
;\: . . . ~
@) o Mp (D) Mg
o - 0 TE
where M; = H; Dﬁi M;, and I—~Ii =My, (D) fori=1,2,.k

Proof. In accordance with (4), the two-sided decompasitf A can be written in

, H M
the following formA = , Where
O T
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Hp©) O
H= *. .

’

O - Hp (O

T=T(Sy) for some subposet § S, andM is an H, T)-bimodule.
SinceH is isomorphic to a finite direct product of serfdbetherian rings, it

possesses the classical ring of fractidhs by [3, theorem 13.2.2]. Moreover,
_ (M@ - O
H = : :
®) e M N (D)
The ringT possesses the classical ring of fractions T, by proposition 1.3.

Letl =g +e+ ... +& + 6. be adecomposition of the identity Afinto
a sum of orthogonal idempotents such thatg =A = H ni (G) fori =1,2,..k

andeqiAeq1 = Ar = T(S)). It is easy to show that any regular elemeni dfas
the following form

n 0 - 0 X
Orp - 0 X
r=|: @ "o : (8
0 0 - e X
0 0 -+ 0 rgs1

where each elementis regular inA, i =1,...k+1, andx, O M, fori =1, 2, ...k
SoC(0) =C(N), whereN is a prime radical oA. Therefore from [5, theorem 3] and
proposition 2.2 it follows thaf has a classical ring of fraction8 which is an
Artinian ring. Taking into account the form of tdgr elements oA from lemma
2.3 it follows thatA has the form (7).

The diagram of a poset S a4 a,,...,0,} is a quiver Q(S) with a set of verti-
ces VS = {1, 2,..n} and a set of arrows AS which contains an armwwith the
start at the vertexand the end at the vertg¥ and only ifa; < a; and there is no
an elementr, such thati; < ax < a;. Now consider the quiver Q(S) with weights,
namely, suppose that each veriteg¥'S has the weight corresponding to the weight
a;. Since S is a poset, the quiver Q(S) is acyclittaas no multiplied arrows, i.e. it
is an acyclic simply laced quiver. (Recall thaguaver Q is calledacyclic if it
does not contain oriented cycles and it is calladply laced if it does not contain
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multiple arrows and multiple loops). Write a verteith a weightH (O) by @
and a vertex with a weiglfit by .

Proposition 2.5. The ring AS,O) corresponding to a pos& with weights is
right hereditary if and only it does not contairetminors of the following forms

D DDOD H,(0) C, C3 Cy4
5|0 D O adce| © D 0 D
0 0DD O 0 D D
0 00D O 0 0 D

where C; are uniserial leftH,(O)-modules and one-dimensional rigbBtvector
spaces for = 2, 3, 4,i.e. any subdiagram of a posgtontains no rhombuses and

diagrams of the following form
/'v\
[ ]
{ ]
‘\ 9)

Proof. 1. Recall that, by [3, corollary 10.4.14], any faty generated projective
module over a semiperfect ring is a finite diragnsof principal modules. Suppose
the ringA = A(SO) is right hereditary and contains the mimbrSinceB is a right
Noetherian ring, any submodule of a finite genaraight B-module is finitely
generated. Since the rigBtsubmodule (O D D) of a projective righB-module
P, = e;;B is not projective oveB, the ringB is not right hereditary. Analogously
the rightC-module (0C, C; Cy) is not projective ove€, and therefore the ring is
not right hereditary. Since each minor of a rigbatdditary ring is right hereditary
itself, A(S,0) contains neitheB nor C.

2. Conversely, assume the riAg= A(SO) satisfies the condition of the proposi-

tion. For anyi = 1,...k a ringA = Hni (O) has the classical ring of fractions
Ei =My, (D) which is a simple Artinian ring. Obviouslyy; [ ;‘ O Ay for

anyi,j =1, 2,...n. By proposition 2.4A has the classical ring of fractions which
is an Artinian ring and has the form (2.5). For any1,...k consider a rind; =

(M”i (D) M J which is Morita equivalent to the ring = (D Xi J
o T®&) o T&)

whereX; is a rightT(S;)-module and a left one-dimension vector space @ver
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SinceA does not contain subrings isomorpBi@andC, the ringsB; andT,; are he-
reditary by proposition 1.5, for any= 1,...k. Then from theorem [7, theorem 2] it

follows that each Rj = Rj I AsAsj is a projective righD-module and all
i<s<j

,ui%j : As Op, Asj — A induced by the multiplication irA are monomor-

phisms for all, s,j =1, 2,...n.

Since, by proposition 2.1, the rigis right Noetherian, all conditions of [7,
theorem 2] are fulfilled. SA is also a right hereditary ring.

Recall that a modul# is calleddistributive if KN(L+N) = KNL+KNN for all
submodule, L, N. A module is calledemidistributive if it is a direct sum of
distributive modules. A ring\ is calledright (left) semidistributive if the right
(left) regular moduleﬂ\A (AA) is semidistributive. A right and left semidisuiive

ring is calledsemidistributive. Semiperfect semidistributive rings (SPSD-rings, i
short) were first considered by A.A.Tuganbaev indigd [9].

Theorem 2.6. Let{O;} be a family of discrete valuation rings with a coomalivi-
sion ring of fraction®, and let any subdiagram of a po&tontain no rhombuses
and diagrams of the forif2.9). ThenA(S,0) is a right Noetherian right hereditary
SPSD¥ring.

Proof. The ringA = A(S) is a semiperfect right Noetherian ring due topos-
tion 2.1 and a right hereditary ring due to proposi2.5. Moreover, for any two

G O
primitive idempotent® andf a ring e+)A(e+f) has one of the form{: 0I 0 J
j

O O O O O D D D D O )
) ) ) , or , whereD is a common
M; G 0 D 0 D 0 D 0 D

division ring of fractions ofOQ, and O,. It is obviously, that each of these
rings is a semidistributive ring. SA is also semidistributive, by [3, theorem
14.2.1].

Corollary 2.7. The right classical ring of fractiond of the right hereditary ring
A(S0) is a right Artinian right hereditarySPSDring and the prime radical of

A(S0) coincides with the Jacobson radical Af.

Corollary 2.8. The prime quiver of the right hereditary ringS0) coincides with

the quiver of the right classical ring of fractio#s and coincides with the diagram
of the poses.

From the results proved in [10] we obtain the feilog statement.
Theorem 2.9. Any indecomposable right hereditary reduced SP$D-1$ exactly

the right hereditary ring £5,0) for some finite pose® which diagram contains
neither rhombuses nor subdiagrams of the fd@n
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