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Abstract.  In this article we consider  special classes of rings related to  finite partially 
ordered sets over division rings and prime hereditary Noetherian rings.  The structure and 
main properties of these rings  are  studied.  These rings are closely connected with right 
hereditary SPSD-rings.  

Introduction 

One of the main goals in the ring theory is to reduce in a certain sense the de-
scription of large classes of rings to simpler classes by use of some ring theoretic 
constructions. The best classical example is the  Wedderburn-Artin theorem de-
scribing semisimple Artinian  rings in the form of direct sums of matrix rings over 
division rings.  There are other interesting constructions of  rings  among which are 
incidence algebras.  

The incidence algebra of a locally finite partial ordered set (abbreviated poset) 
over a field was first introduced by Rota [1]. Later this notion was extended to the 
case of commutative rings. The most complete information about incidence alge-
bras over commutative rings can be found in the book of  Spiegel, O'Donnell [2].  

In this paper we consider special classes of rings related to posets over associa-
tive rings (not necessary commutative). These rings can be considered as some 
generalization of incidence algebras. In section 1 we define and study the proper-
ties of incidence rings of finite posets over division rings. The special class of right 
hereditary rings connected with finite posets and discrete valuation rings (not nec-
essary commutative) are considered in section 2. 

All rings considered in this paper are associative with identity and all modules 
are unitary. We refer to [3] and [4] for general material on theory of  rings and 
modules.  

1. Incidence rings. Rings T(S, D) 

Consider a special class of rings related to  posets. These rings are particular ex-
amples of incidence rings. 

Please cite this article as:
Michael Dokuchaev, Nadiya Gubareni, Rings related to finite posets, Scientific Research of the Institute of Mathematics
and Computer Science, 2010, Volume 9, Issue 2, pages 25-36.
The website: http://www.amcm.pcz.pl/



M. Dokuchaev, N. Gubareni 

 

26 

Let S = {α1, α2,…,αn}  be a finite poset with a binary ordering relation ≤, and A  
an associative ring with identity. A finite poset S  can be represented by  the Hasse 
diagram which  is a directed graph with the set of vertices  {1, 2,…,n} and the set 
of arrows given by the following way: there is an arrow σ: i → j (i ≠ j) if and only 
if  αi < αj, and moreover if  αi ≤ αk  ≤ αj  then either k = i or k = j.  

A poset P = {a,b,c,d | a<b<d; a<c<d} whose  Hasse diagram has the following 
form: 

 

                                          (1) 

 

 
is called a rhombus.  

Denote by S  a non-oriented graph obtained from the Hasse diagram of S by de-
leting the orientation of all arrows. Then it is easy to show that a non-oriented 
graph S  is a tree if and only if S contains no subposets whose diagrams are rhom-
buses.  

Note also the well-known fact that a finite poset S = {α1, α2,…,αn} with an or-
dering relation  ≤ can be labelled so that  αi ≤ αj  implies  i ≤ j.  

Definition.  The incidence ring of a poset S over an associative (not necessary 
commutative) ring A with identity is a subring I(S, A) of the generalized matrix 
ring M

n
(A) such that the (i,j)-entry of I(S, A) is equal to 0 if  αi ≤ αj  in S. 

It is easy to show that  a poset S can be labelled in such a way that a ring I(S, A) 
is isomorphic to a ring T(S, A) which is an upper triangular ring. In particular, if 
a poset S is a linear ordered set then  I(S, A) ⊆  Tn(A). 

Recall that a ring A is semiperfect if any finitely generated A-module has 
a projective cover. A ring A is right hereditary if each right ideal of A is projective.  

The following theorem gives the main properties of the ring I(S, A). 
 

Proposition 1.1.    Let S = {α1, α2,…,αn}  be a finite poset, and A an associative 
ring with identity and  Jacobson radical R. Then 
1) I(S, A) is semiperfect if and only if A is semiperfect; 
2) The Jacobson radical of I(S, A) is a set of elements of I(S, A) for which the (i,i)-

entry is in R; 
3)  I(S, A) is right (left) Noetherian if and only if A is right (left) Noetherian; 
4)  I(S, A) is right (left) Artinian if and only if A is right (left) Artinian. 

 

Proof.  
1) follows from [3, theorem 10.3.8]. 
2) follows from 1) and [3, theorem 11.1.1]. 
3) and 4) follows from [3, theorem 3.6.1]. 
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Now consider a particular example of the incidence rings when a ring A = D is 
a division ring. We denote this ring T(S, D) and  as mentioned  above there is 
a numbering of  S such that the ring  T(S, D) ⊆   Tn(D). In what follows  the ring  
T(S, D) will be always assumed to be an upper triangular  ring.  

From proposition 1.1 we immediately obtain the following statement. 
 

Proposition 1.2.   
1. T(S, D) is an   Artinian semiperfect ring.  
2. The Jacobson radical R of  T(S, D) is equal to the prime radical N of T(S, D) 
and the two-sided Peirce decomposition of R has the  following  form: 

eiiReii  =  0  and   eiiRejj = eiiT(S, D)ejj, for   i,j =1, 2,…,n;  i ≠ j 

Recall that a semiperfect  ring A  with  Jacobson radical R is reduced if A/R is 
a direct sum of division rings. From proposition 1.2 it immediately follows that the 
ring T(S, D) is reduced. 

 

Proposition 1.3. The ring T(S, D)  possesses a classical ring of fractions which  
coincides with T(S, D). 
 

Proof.  By proposition 1.2, T(S, D) is an upper triangular Artinian semiperfect ring 
with the Jacobson radical R which coincides with the prime radical N.  It is easy to 
show that any regular element r  of T(S, D)  has the following form  

 r = diag(d1, d2,…,dn) + x  (2) 

where  each  di is a nonzero element of D and x ∈  N.  Therefore C(0) = C(N), 
where C(0) is the set of regular elements of A, and  C(N)  is the set of elements of A 
whose images are regular elements in A/N.    

Therefore from [5, theorem 3], it follows that  T(S, D)  possesses a classical ring 

of fractions T
~

which is an Artinian ring. Since any regular element of  T(S, D)  has 

the form (1.2), it is  invertible in T(S, D), and so T
~

= T(S, D). 
A finite poset S is said to be connected if the Hasse diagram of S is connected. 

It is obvious that the ring T(S, D) is indecomposable if and only if the poset S is 
connected.  Since T = T(S, D) is an Artinian  ring it is possible to construct the 
quiver Q(T) of this ring. Recall that Q(T) = Q(T/R2), where R is the Jacobson radi-
cal of T.  Let Pi = eiiT be a principal module of T(S, D). Then the right quiver of  
T can be constructed by the following way.  If 

ijt
j

n

j
iiii PReRe ⊕

=
≅

1

2/  

then in the quiver Q(T) the vertex i is connected with the vertex j by tij arrows. 
 

Proposition 1.4. The quiver Q(T) of the ring T(S, D) coincides with the Hasse dia-
gram of the poset S. 
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Proof. From [3, theorem 11.1.9] we can assume that T = T(S, D) is an indecompos-
able ring and so the Hasse diagram  of S is connected. Let {eij} be the set of all 
matrix units of Mn(D) and 1 = e11+ e22 +… + enn  a decomposition of the identity of 
T in the sum of pairwise orthogonal idempotents. Consider the diagram of S and 
the following cases. 
1.  Assume that there is an arrow i → j in the diagram of S, which means that  

eiiRejj = D and eiiRekk = 0 or ekkRejj = 0 for any integer k.  

Then .0
1

2 =⋅= ∑
=

n

k
jjkkkkiijjii eReeReeRe  Therefore there is exactly one ar-

row i → j  in the quiver Q(T). 
2. Assume that  αi ≤ αj  and there is no arrow of the form i → j  in  the Hasse dia-

gram of  S. This means that there is a positive number k such that eiiRekk = D or 
ekkRejj  = D. Then   

 DeReeReeRe
n

k
jjkkkkiijjii =⋅= ∑

=1

2  

and therefore ,0/ 2 =jjiijjii eReeRe  i.e. in the quiver Q(T) there is no arrow  

i → j. 
Conversely, suppose that there is an arrow  i → j  in the quiver Q(T). This 

means that there is an exact sequence 

 0
1

→→⊕
=

ReP iij

n

j
 

Therefore eiiRejj  ≠ 0  which means that αi ≤ αj,  and  there is an arrow i → j  in 
the diagram of  S.  
 

Proposition 1.5.  The ring T(S, D) is two-sided hereditary if and only if the  Hasse 
diagram of S is a tree, i.e. a poset S contains no subposets which diagrams are 
rhombuses.  
 

Proof. Let  T = T(S, D) be a hereditary ring. Assume the diagram of S  contains  
subposet which diagram is a rhombus. This means that T contains an idempotent 
e such that the ring  eTe = B, where 

  B = 





















D

DD

DD

DDDD

000

00

00
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This is impossible, since the ring B is not right hereditary, and any minor of 
a right hereditary ring is right hereditary. 

Conversely, suppose the two-sided Peirce decomposition of T does not contain 
the minors of the form B. Then the diagram of S is an acyclic simply laced quiver 
with no extra arrows such that its underlying graph S  (obtaining from S by delet-
ing the orientation of the arrows) is a tree. From proposition 1.4 it follows that the 
ring T can be considered as a path algebra corresponding to the graph S  over 
a division ring D. Therefore T is a hereditary ring, by [3, theorem 2.3.4].   
 

Theorem 1.6. The ring T = T(S, D) is an Artinian semidistributive piecewise do-
main. 
 

Proof.  Since for any primitive pairwise orthogonal idempotents e, f ∈  T the ring 

(e+f)T(e+f) is either of the form 








D

DD

0
 or 









D

D

0

0
, T is a semidistributive ring, 

by [3, theorem 14.2.1]. Denote Pi = eiiT, i = 1,…,n. Let ϕ: Pi → Pj be a nonzero 
homomorphism. Then ϕ(eii a) = ϕ(eii) a = ejja0eii a, where a0, a ∈  T and ejja0eii is 
a nonzero element from ejjTeii = D.  Thus d0 = ejja0eii defines a monomorphism. 
Therefore the ring T is a piecewise domain.  

 

Theorem 1.7. If any subdiagram of the diagram of a poset S contains no rhombus-
es then T(S, D) is a two-sided Artinian hereditary semidistributive ring. 

 

Proof. This follows immediately from theorem 1.6 and proposition 1.5.  
 

Proposition 1.8. The ring T = T(S, D) is serial if and only if S is a disconnected 
union of linearly ordered sets. 
 

Proof. Since the ring T is indecomposable if and only if the poset S is connected, 
one can assume that T is indecomposable. If S is a chain, then T = Tn(D) and the 
statement is obvious.  

Conversely, suppose that T is a serial indecomposable ring. Then by proposition 
1.6 the quiver of the ring T coincides with the diagram of the poset S and, by  
[3, theorem 12.1.2], it is a chain. Thus, S is a linearly ordered poset.   

2.  Right hereditary rings  A(S, O) 

Let  O� be a discrete valuation ring with a division ring of fractions D and the 
Jacobson radical M. By [3, corollary 10.2.2], O is a local Noe-therian hereditary 
ring which is a right and left principal ideal domain (PID) and M is its unique max-
imal right and left ideal. 
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Consider the ring  

 Hn(O) = 



















OMM

OOM

OOO

�

����

�

�

  (3) 

which is a subring in the matrix ring Mn(D). Clearly,  Hn(O) is a Noetherian serial 
prime hereditary ring. And so, by the Goldie theorem, it has a classical ring of frac-
tions, which is Mn(D). 

Let  {Oi} be a family of discrete valuation rings (not necessary commutative) 
with  Jacobson radicals M

i
 and a common division ring of fractions D, for i = 1, 

2,…,k;  S = {α1, α2,…,αn}   a finite poset with a partial order ≤;  S0 = {α1, 
α2,…,αk} a subset of minimal points of  S (k ≤ n), and S= S0 ∪  S1, where   
S1 = {αk+1, αk+2,…,αn}. 

According with this partition of S consider the poset S with weights  so that the 
point i has the weight )( in OH

i
,  i = 1,2,…,k;  ni ∈  N; and all other points  

j have the weight D.   
Construct the ring  A = A(S, S0, S1, O1,…,Ok, D, n1, n2, …,nk) (or  A(S,O), in 

short) which is a subring of  Ms(D), s = n1+n2+…+nk +(n-k)  by the following way. 
Let the identity of A be decomposed into a sum of pairwise orthogonal idempotents 
1 = f1 + f2 +…+ fn and  the two-sided Peirce decomposition have  the following 
form: 

 ji

n

ji
AffA ⊕

=
=

1,
 

where )( inii OHAff
i

=  for i = 1, 2,…,k;  fAf  = T(S1)  for f  =  fk+1 + …+ fn ;  

and  Aij  = fiAfj is  an (Aii, Ajj)-bimodule, for  i,j =1, 2,…, n. Moreover,  Aij = 0  if  αi 
≤ αj  in S.  If  αi ≤ αj  in S and αi ∈  S0,  αj ∈  S1, then eAfj = D for any e ∈  fi.  So the 
two-sided Peirce decomposition of A has the following form: 

 A= 





















)S(

)(

)(

1

111

TOO

MOHO

MOOH

kkn

n

k

�

�

����

�

  (4) 

where M
i
 is a ( )S(),( 1TOH ini

)-bimodule for i = 1, 2,…,k; )S( 1T  is the  inci-

dence ring of a poset  S1 over a division ring D.  These rings were first considered 
in [6].  
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Proposition 2.1.  Let { Oi} be a family of discrete valuation rings with a common 
division ring of fractions D. Then A(S,O)  is a right Noetherian semiperfect ring. 

 

Proof.  Since the identity of A = A(S,O) is decomposed into a sum of a finite num-
ber of pairwise orthogonal local idempotents, A is semiperfect, by [3, theorem 
10.3.8].  From the facts that all  )( in OH

i
 are Noetherian rings, T(S, D) is an Artini-

an ring, all Mi are finite dimension vector spaces over D,  it follows that A is a right 
Noetherian ring, by [3, theorem 3.6.1].   

 

Let N be the prime radical of a semiperfect ring  A(S,O). Then the two-sided 
Peirce decomposition of N has the following form  

 N = 





















1

1

N

M

M

k

OO

OO

OO

�

�

����

�

,  (5) 

where N1 is  the prime radical of an Artinian ring T(S1) which coincides with its 
Jacobson radical by [3, theorem 10.3.8]. Since N1 is nilpotent, by [3, proposition 
3.5.1], N is nilpotent, as well.   

Denote A0 = A/N and W = N/N2. Then A  = A0 ⊕   N  as a direct sum of two Abe-
lian subgroups and  

 TAAAA k ××××= �210  

where )( ini OHA
i

= for i = 1,…, k;  nk AARTT ××=≅ + �111 /)S( ;  Aj = D  

for i = k+1,…,n.  Thus  we obtain the following statement: 
 

Proposition 2.2.  The prime radical of the ring A(S,O) is nilpotent, and A/N is 
a finite direct sum of prime rings.   

 

Let  nff ++= ...1 1   be the corresponding decomposition of the identity of A0 

in the sum of pairwise orthogonal idempotents. Set the correspondence between the 
idempotents nff ,,1 �  and vertices 1,…,n connecting the vertex i with the vertex j 

by an arrow if and only if  0≠ji fWf . The obtained finite directed graph PQ(A) is 

the prime quiver of A (see [3, section 11.4]). 
Since A0 is a semiprime Noetherian ring, by the Goldie theorem it has a classi-

cal ring of fractions which has the following form: 

 DDDMDMAAA
knnn ×××××=××= �� )()(

~
...

~~
110  
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Lemma 2.3.  Let  O be a discrete valuation ring with a division ring of fractions D. 

Then the ring A(S,O) = 








)S(0

)(

1T

MOHn , where M is a ( )S(),( 1TOHn )-

bimodule, has the right classical ring of fractions which is an Artinian ring  and 
has the following form  

 









=

)S(

~
)(~

1T

MDM
A n

O
  (6) 

where ,
~~~

~ MHMHM
H

⊗≅=  and  H
~

= Mn(D). 
 
 

Proof.   Let 1 = e1+ e2 be a decomposition of the identity of A into a sum of or-
thogonal idempotents  such that e1Ae1 = A1 = Hn(O) and e2Ae2 = A2 = T(S1). Then 

any regular element of A has the following form r = 








2

1

0 r

xr
, where r i is a regular 

element of Ai for i = 1, 2  and x ∈  M.  So C(0) = C(N), where N is the prime radical 
of A. Therefore from [5, theorem 3] and proposition 2.2 it follows that A has a clas-

sical ring of fraction A
~

  which is an Artinian ring. From the representation of 

a regular element of A it follows that  there exist  )(1
1 OMr n∈−  and  )( 1

1
2 STr ∈−  

such that  r–1 =  =














−

−

1
2

1
1

0 r

yr
,  where y =  Mxrr

~1
2

1
1 ∈− −− , which shows that A

~
 

has the form (6).  
 

Proposition 2.4.  Let  { Oi}  be a family of discrete valuation rings with a common 
division ring of fractions D. Then the ring A(S,O) possesses a right classical ring of 

fractions A
~

 which is an Artinian ring and has the form:  

 





















=

)S(

~
)(

~
)(

~

1

11

T

MDM

MDM

A
kn

n

k

OO

O

O

�

�

����

�

 

where  iHii MHM
i

~
~~ ⊗= ,  and  )(

~
DMH

ini =   for  i =1, 2,…,k. 
 

Proof.  In accordance with (4), the two-sided decomposition of A can be written in 

the following form A = 








T

MH

O
, where  
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 H =  

















)(

)( 11

kn

n

OH

OH

k
�

���

�

O

O
, 

T = T(S1)  for some subposet S1 ⊆  S, and  M is an (H, T)-bimodule. 
Since H is isomorphic to a finite direct product of serial Noetherian rings, it 

possesses the classical ring of fractions H
~

, by [3, theorem 13.2.2]. Moreover,  

 H
~

 = 

















)(

)(
1

DM

DM

kn

n

�

���

�

O

O
 

The ring T possesses the classical ring of fractions T
~

= T, by proposition 1.3. 
Let 1 = e1 + e2 + …  + ek + ek+1 be a decomposition of the identity of A into 

a sum of orthogonal idempotents  such that  eiAei = Ai = )( in OH
i

 for i  = 1, 2,…,k 

and ek+1Aek+1 = Ak+1 = T(S1). It is easy to show  that any regular element of A has 
the following form  

 























=

+1

22

11

000

00

00

00

k

kk

r

xr

xr

xr

r

�

�

�����

�

�

  (8) 

where each element r i is regular in Ai,  i = 1,…,k+1, and xi ∈  Mi for i = 1, 2, …,k.  
So C(0) = C(N), where N is a prime radical of A. Therefore from [5, theorem 3] and 

proposition 2.2 it follows that A has a classical ring of fractions A
~

  which is an 
Artinian ring.  Taking into account the form of regular elements of A from lemma 

2.3 it follows that A
~

 has the form (7).  
The diagram  of a poset  S = {α1, α2,…,αn} is a quiver Q(S) with a set of verti-

ces VS = {1, 2,…,n} and a set of arrows AS which contains an arrow σij with the 
start at the vertex i and the end at the vertex j if and only if αi <  αj and there is no 
an element αk  such that αi <  αk  <  αj. Now consider the quiver Q(S) with weights, 
namely, suppose that each vertex i∈ VS has the weight corresponding to  the weight 
αi. Since S is a poset, the quiver Q(S) is acyclic and has no multiplied arrows, i.e. it 
is an  acyclic simply laced quiver. (Recall that a quiver Q is called  acyclic if it 
does not contain oriented cycles and it is called  simply laced if it does not contain 
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multiple arrows and multiple loops). Write a vertex with a weight )( in OH
i

 by � 
and a vertex with a weight D by  • . 

Proposition 2.5.  The ring A(S,O) corresponding to a poset S with weights is 
right hereditary if and only it does not contain the minors of the following forms: 

 B = 





















D

DD

DD

DDDD

000

00

00
  and  C = 





















D

DD

DD

CCCOHn

00

0

0

)( 432

O

O

O
 

where Ci are uniserial left Hn(O)-modules and one-dimensional right D-vector 
spaces for i = 2, 3, 4, i.e. any subdiagram of a poset S contains no rhombuses and 
diagrams of the following form:  

 
 
 
 
 

(9)  
 
 
 
 

Proof. 1. Recall that, by [3, corollary 10.4.14], any finitely generated projective 
module over a semiperfect ring is a finite direct sum of principal modules. Suppose 
the ring A = A(S,O) is right hereditary and contains the minor B. Since B is a right 
Noetherian ring, any submodule of a finite generated right B-module is finitely 
generated. Since the right B-submodule (0 D D D) of a projective right B-module 
P1 = e11B is not projective over B, the ring B is not right hereditary. Analogously 
the right C-module (0 C2 C3 C4) is not projective over C, and therefore the ring C is 
not right hereditary. Since each minor of a right hereditary ring is right hereditary 
itself, A(S,O) contains neither B nor C. 
2. Conversely, assume the ring A = A(S,O) satisfies the condition of the proposi-
tion. For any i = 1,…,k a ring Ai = )( in OH

i
 has the classical ring of fractions  

)(
~

DMA
ini =   which is a simple Artinian ring. Obviously, ijAiij AAA

i
⊗≅ ~

, for 

any i,j =1, 2,…,n. By proposition 2.4, A has the classical ring of fractions A
~

 which 
is an Artinian ring and has the form (2.5). For any i = 1,…,k consider a ring Bi = 












)S(

~
)(

1T

MDM ini

O
, which is Morita equivalent  to the ring Ti = 









)S( 1T

XD i

O
, 

where Xi is a right T(S1)-module and a left one-dimension vector space over D. 
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Since A does not contain subrings isomorphic B and C, the rings Bi and Ti are he-
reditary by proposition 1.5, for any i = 1,…,k. Then from  theorem [7, theorem 2] it 

follows that each  ∑
<<

=
jsi

sjisijij AAAA /  is a projective right D-module and all 

ijsjAisisj AAA
s

→⊗:0µ  induced by the multiplication in A are monomor-

phisms for all i, s, j = 1, 2,…,n. 
Since, by proposition 2.1, the ring A is  right Noetherian, all conditions of [7, 

theorem 2] are fulfilled. So A is also a right hereditary ring.   
Recall that a module M is called distributive if K∩(L+N) = K∩L+K∩N for all 

submodules K, L, N. A module is called semidistributive if it is a direct sum of 
distributive modules. A ring A is called right (left) semidistributive if the right 
(left) regular module A

A
 (

A
A) is semidistributive. A right and left semidistributive 

ring is called semidistributive. Semiperfect semidistributive rings (SPSD-rings, in 
short) were first considered by A.A.Tuganbaev in [8] and [9]. 

 

Theorem 2.6. Let {Oi} be a family of discrete valuation rings with a common divi-
sion ring of fractions D, and let any subdiagram of a poset S contain no rhombuses  
and diagrams of the form (2.9). Then A(S,O) is a right Noetherian right hereditary 
SPSD-ring. 

 

Proof. The ring A = A(S,O) is a semiperfect right Noetherian ring due to proposi-
tion 2.1 and a right hereditary ring due to proposition 2.5. Moreover, for any two 

primitive idempotents e and f a ring (e+f)A(e+f) has one of the forms: 











j

i

O

O

0

0
,  










ii

ii

OM

OO
, 









D

Oi

0

0
, 









D

DOi

0
, 









D

DD

0
, or 









D

D

0

0
, where D is a common 

division ring of fractions of Oi and Oj. It is obviously, that each of these  
rings is a semidistributive ring. So A is also semidistributive, by [3, theorem 
14.2.1].  

Corollary 2.7. The right classical ring of fractions A
~

 of the right hereditary ring 
A(S,O) is a right Artinian right hereditary SPSD-ring and the prime radical of 

A(S,O) coincides with the Jacobson radical of A
~

. 
 

Corollary 2.8. The prime quiver of the right hereditary ring A(S,O) coincides with 

the quiver of the right classical ring of fractions A
~

 and coincides with the diagram 
of the poset S. 

From the results proved in [10] we obtain the following statement. 
 

Theorem 2.9. Any indecomposable right hereditary reduced SPSD-ring is exactly 
the right hereditary ring A(S,O) for some finite poset S which diagram  contains 
neither rhombuses nor subdiagrams of the form  (9).  
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