Please cite this article as:

Henryk Piech, Wioletta Skibinska, Compromise in scheduling objects procedures basing on ranking lists, Scientific
Research of the Institute of Mathematics and Computer Science, 2010, Volume 9, Issue 1, pages 177-186.

The website: http://www.amcm.pcz.pl/

Scientific Researctf the Instituteof Mathematicand Computer Science

COMPROMISE IN SCHEDULING OBJECTS PROCEDURES
BASING ON RANKING LISTS

Henryk Piech, Wioletta Skibiriska

Institute of Computer and Information Science, Coégtova University of Technology, Poland
e-mail:hpiech@adm.pcz.czest.pl

Abstract. In our work possibility of support of ranking obje (tasks) is analyzed on base
of group of lists. We can get these lists both fexperts or with help of approximating and
simple (according to complexity) algorithms. To pag analyze we can use elements of
neighborhood theory, preferential models, and raagagh theory. This supporting process is
used for creation final list of tasks sequence.dlguthese problems are connected with
distribution, classification, prediction, strategfy games as well as compromise searching
operations. The utilization preference and domimatinodels permits to crisp inferences
and to force the chronological location of objéntsome situations we have deal with dy-
namic character of filling lists resulting from donwous tasks succeeding and continuous
their assigning to executive elements. The utilimathe theory of neighborhood permits to
locate objects in range of compromised solutionssisd in closing to dominating proposal
group. Main task for us is find the best compronmisaspect to final objects location. We
want to defined advantages and drawback of methadsig on mention theories and ana-
lyze possibilities of their cooperation or mutuahwpletions

I ntroduction

There are many application of preference theorgotuing the problems of de-
cision supporting [1-4]. The dynamic schedulingngspreferential models and
rough sets theory does not introduce essential tedpghanges in algorithms
based on this theory but only adjusts to her patemmef data [5-8]. Preferences
and dominations [9, 10] are used to comparing sempse of assigning tasks to
realization but previously we should select datd define profiles which repre-
sent tasks (objects) in aspect of preference toutixa (final location) [10, 11].
The domination in Pareto and Lorenz sense permitsettle basic relations be-
tween sequences of well ordered objects. The mnedes of type "at least as good
as..." estimated as interval (by low and upperrtheunds) permit to define zone
of uncertain solution. In such situations, for dem making we use additional
criteria (on example the costs of reorganizatidj)j1

For defining the tags of localization one used @et® of neighborhood theory
[4, 13] such cooperation, toleration and collisiarrange of neighborhood [10,
14, 15]. They are named according to researchetlgms. It was connected,
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among others, with supporting or rejecting the ithabout task location in centre
of given neighborhood. The closed neighborhooddimorand support the deci-
sion (the thesis) about assignment the task toretadocation.The relation of
tolerance have reflective and symmetrical charaft8 16]. The cooperating
neighborhoods intensify the strength of dominatéo reduce the influence of
passivity or small influence of tolerance. The cam@pion (the supports of thesis)
and the collision relation (the postponement ofpsupof thesis, what means indi-
rectly, the support of antithesis) crisp inferemeechanisms [12, 17]. Cooperation
has reversible character. This kind of dependeeteden relations should simpli-
fy creation of conclusion. According to theory dighborhood, which we engage
in procedure of establishing sequent, we increaseatitonomy of studied tasks
groups with reference their distribution. The syrntmneof inference increases
power of decision support at the same time [13, ITB¢ next problem is connect-
ed with dynamic scheduling, and appointing the cioje solutions (independent
on sequent or set of criterions or experts opinio@bviously, it is not always
possible, but comfortably is to use interval san$, particularly in situation,
when solutions are on border of location classesraing to given criterion [19].

1. Compromise estimation after process of creating final ranking list

Compromise is formed between ingredient judgmests kvhich was built with
help of algorithms or on base of experts opinidiere is possibility of creating
several type of compromise, for example:

1. minimum concessions and similar of their levelsnimum variance of conces-
sions);

{emp1=Y" 3" (loch, j) - locf(i))?} > min
=

var{ " (Ioc(i, ) ~locf (1))2}> min  j4.,2,...m 1)
or )
var{ " (Ioc(i, ) ~locf (1))?}>min  i=1,2,...n

j=L
wherevar - variance of concession according to ingredieshiolr to tasks.

2. minimum distances between center of neighborhooitts maximum powers
(or concentration) and final tasks location;

{cmpzzzn:(centre_max_pow(i) —locf(i))?} = min
i=1
or
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n
{cmp2=3 (centre_max_concentraion(i) —locf (i))2 } 2 min 2
i=1
where:
centre_max_pow- centre of maximum power neighborhood,
centre max_concentration- centre of maximum concentration (numbering)
neighborhood,

3. minimum correction on final list according Lorenaeference location

n

{cmp3=>_ (Lorenz_loc(i) - locf ()%} > min 3)
i=1

Generally we can describe compromise as follows:

n

{cmp=>_ (criterion _loc(i) - locf ()%} > min 4
i=1

wherecriterion_lod(i) - location ofi-th object suggested by chosen criterion.

We can to use different criterion or their compositfor estimation of com-
promise. In result of using these criteria we oftdain the same location for dif-
ferent objects. In this case it needs to use auyilcriteria, methods or heuristic
rules. Sometimes we decided to use different @ithr compromise estimation
and resign from based for creating final lists rodt(Fig. 1).

criteria set A criteria set B

y A4

objects location estimation compromise estimation

Y

Fig. 1. Distinguished criteria set for creatinggfi list and compromisés»B=0

In our convention (1)-(4) the best compromise efhie smallest value of pa-
rametercmp. To compare compromise for several final lists Wweudd keep the
same criteria in sd.

2. Setsof criteriafor creating final list

It is necessary to define several criteria becatisn results from using single
criteria aren’t unambiguously. It means that weehagveral objects pretending to
one location on final list. We propose several cosijjon of criteria:

1. sug¢@=>¢) 2 max
centrég,i) 2 min
2.cnbH(@,i) 2 max
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zongg,i) 2 min
centrég,i) 2 min

3.sup(*2¢) + sup@<€*) 2 min
cnbl{g,i) 2 max (5)

wheresuf ¢ 2¢) 2 max- maximal number of object in one placement irreui
ent lists, we chose objegtand placed it on positiog,

centrd¢,i) 2 min - minimal position of neighborhood centre, we sthobjectg,
from this neighborhood, which is closed to begirisif and locate it in center of
its neighborhood,

cnbh¢,i) 2 max -maximal concentration neighborhood, we chose ohjeuatith
maximal neighborhood concentration (numbering) landte them in its center,
zond @,i) 2 min minimal neighborhood distance from begin of lise chose ob-
ject ¢ with minimal neighborhood distance and locate tleits center,

sup* 2¢) + sup(@ €*) 2 min - minimal number of objects pretending to position
¢ and minimum positions to which pretended objegtsve chose objeaf and
locate them on positiogh (intuition criterion).

We often obtain the same value of criteria estimsatim this case we should go
to next criterion in hierarchy, considering thensaobject and searching next the
best location for it. Similar situation appears whhosen location is occupied by
previous located objects.

3. Methods and examples of creating final lists of scheduled objects

For scheduling objects we can use rules usingaartbs:

— neighborhoods,
— preferences,
— rough sets.

Beside of criteria set we can use specific methmilsg traditionally for classi-
fication, categorization, ordering objects [4]. W to enrich every of proposed
method by example. Above was described exploitatieiyghborhoods theory to
define criteria set. It is possibility to combinkerments of quoted theories in dif-
ferent variant:

1) neighborhoods + rough sets

We can create lower approximati&O) [16] as set of maximal concentration
(or power) neighborhoods and upper approximatR(®) as set of all objects
locations. In this case main struct€® is defined by sum of all neighborhoods.
2) neighborhoods + preferences

We can define preferences relation between neidioioals (or maximal neigh-
borhoods) using their characteristics (concentmai@wer).

3) neighborhoods + preferences + rough sets
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From set of upper approximation we chose and rematreme located neigh-
borhoods and locate adequated them objects inrtbgjhborhoods center.

For researches objects distribution it can be expbugh sets theory (Pawlak
theory).

Using Pawlak theory [20] we can adapt semanticddigendence on physically
sense of terminology, e.g. relative zoi@).(In our case (in ordering objects by
several algorithms simultaneously) we can defiriatitee zone as a range of posi-
tions in which are included the most important hbmyhoods representing all
objects (lower approximation). Relative zone hasmon part with less important

nbh(i, mgx) 0 (O) nbhi,may= P (O) (lower approximation) (6)

U _
nbh(i,* < max)n (O) # 0 nbh(i, * <max) = P (O) (upper approximation)  (7)

So in our case relative zon®)(can be named representative zone and it con-
tained objects on all position®)=(1)+(2)+...+(8). This zone will be systematical-
ly cut off (from both sides) during extracting otiig to final list (Tables 1). So this
zone has dynamic length.

The draw back of above presented method (Tablesrigist in preferring cen-
ter neighborhoods location over their numbering.

When we use Lorenz preference rules [7] in simpley we can calculate aver-
age locations for all objects. In our example (€all) we obtain next results:

pL(1)=aver(loc(¢,))=(1+1+3+8)/4=3,25
pL(2)=aver(loc(g,))=(1+2+4+7)/4=3,5
pL(3)=aver(loc(gs))=(1+2+2+3)/4=2
pL(4)=aver(loc(¢s))=(1+1+3+8)/4=4,5
pL(5)=aver(loc(gs))=(4+6+6+8)/4=6
pL(6)=aver(loc(gs))=(2+3+3+5)/4=3,25
pL(7)=aver(loc(¢-))=(6+7+8+8)/4=7,25
pL(8)=aver(loc(gs))=(5+6+7+7)/4=6,25

wherepL(i)=aver(loc(#))=1m>_loc(#(, j)) - the strength of Lorenz preference

j=1
characteristic.
After ordering we have final list of ranking

pL(3)~pL(1)~ pL(6)~pL(2) > pL(4) ~ pL(5)~ pL(8).>~ pL(7)
or in form

Example 2

3 1 6 2 4 5 87 final list - preferencein Lorenz sens
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Tables 1
Using rough setstheory for creating final ranking list

1 3 6 2 4 5 8 7
3 6 1 4 8 5) 2 7 sum of max. neigborhoods-->smn
1|2 | 3] 4 6 | 7 | 8 5 (0)=(1)+(2)+...+(8)
2 3 6 5 4 8 7 1
1 3 6 2 4 5 8 7 smn=smn-nbh(1,max)-nbh(7,max)
8 6 1 4 8 5 2 7 (0)=(0)-(8)
1 2 3 4 6 7 8 5
2 3 6 5 4 8 7 1
il i final list —> first stage
1 3 6 2 4 5 8 7 smn=smn-nbh(3,max)-nbh(8,max)
3 6 1 4 8 5 2 7 (0)=(0)-(7)
1 2 3 4 6 7 8 5
2 3 6 5 4 8 7 1
il 3 8 i final list —=> second stage
1 3 6 2 4 5 8 7 smn=smn-nbh(2,max)-nbh(5,max)
3 6 1 4 8 5 2 7 (0)=(0)-(2)
1 2 3 4 6 7 8 5
2 3 6 5 4 8 7 1
il 3 2 5 8 i final list —> third stage
1 3 6 2 4 5 8 7 smn=smn-nbh(6,max)-nbh(4,max)
3 6 1 4 8 5 2 7 (O0)=0
1 2 3 4 6 7 8 5
2 3 6 5 4 8 7 1
Example 1
il 3 2 6 4 5 8 i final list —> last stage

The drawback of this approach consist in regardioigessential date such sin-
gle location e.g. to regarding essential informmatiee use only neighborhoods and
for it we prepare their characteristics:
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Table 2
Characteristicsof neighborhoodsfor all tasks
description numbering zone centre power
of neighborhood
nbh(1,1) 2 1 1 2
nbh(2,1) 2 2 1 1
nbh(3,1) 4 3 2 1,33
nbh(41) 4 2 4 2
nbh(5,1) 2 1 6 2
nbh(6,1) 6 2 3 3
nbh(7,1) 4 3 8 1,33
nbh(8,1) 4 3 7 1,33
In(i) In(i)
pn(i):Znumberinanh_M ) *centrdg (i, j))/ Z numberindgnbh_¢(, j)) (8)
j=1 j=1

where:

In(i) - number of neighborhoods foth object

numberingnbh(i,j)) - numbering (concentration) ¢tth neighborhood foi-th ob-
ject (table 2)

centrd¢(i,j)) - centre of ofj-th neighborhood foi-th object (table 2)

pn(1)=2*1/2=1  pn(5)=2*6/2=6
pn(2)=2*1/2=1  pn(6)=6*3/6=3
pn(3)=4*2/4=2  pn(7)=4*8/4=8
Pr(4)=4*4/4=4  pn(8)=4*7/4=T

Example 3

1 2 3 B h 5 87 |finaJIist-gravitypointsforeve

ry object

To analysis and compare chosen methods we proguseecset of criterion

(1), for example:

cnbh(¢,i) 2 ¢ max
zondg,i) = min
centre@,i) 2 min

and with help of them formulate final list. It giws solution with structure:
Example 4

1 3 6 4 2 B 87 final list - set of criteria

In this case we have next sequence of joiningnal fist:
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1)@ 2) 24 )2 4) G2
1) ¢ 25 2) g 2¢n 3) ¢ 4) PP

According this method we use essential date and single object placement and
deviation.

4. The example of exploitation compromise to judgment of set
of final list

For choice compromise criteria we can lead the fijtyaof information which
was use to define in estimation process. Such appreuggested to exploit Lo-
renz preferences as compromise criterion. In s we estimate scale of differ-
ences between final lists and list created on baseorenz preference. According
(4) we do it for all solution
1) cmp= Z(crlterlon loc(i) —locf(i))> = 83 — 1f + (1 — 3f + (6 — 2F

i=1

+(2-6)2+ (4 — 4+ (5-5%+ (8 —8F + (7— 7F=48

3) cmp:i (criterion_loc(i) —locf (i))* =(3-1f + (1 — 2§ + (6 — 3} + (2 — 6}

+@-#i@-§+@-$+g;ﬁﬂo

4) cmp= Z(cntenon loc(i) —locf(i))? = (3 — 1f + (1 — 3f + (6 — 6
+(2- 45"+(4 2f +(5-5f+(8-8f + (7-7f=16

min{cmp1); cm@3); cm4)} = min{48; 30; 16} = 16

To find the nearest, to compromise solution, fiisdlwe have named additional
parameter for defining method code, according wipahicular list was created.
For example we extend location attribute name tflocfi(i), wherek - code of
using for creating final list method (which are qdated to presented above exam-
ples). Compromise expression stay to be simplecanchas follow form:

{cmpzi i(criterion_loc(i) -locf, (i))*} > min 9)

k=1 i=1

wherelm - number of ordering methods basing on ingredistg analysis.
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The best compromise according Lorenz criterion we in (4) example. Obvi-
ously when we chose different compromise critetlom best criterion will be dif-
ferent. Some time we dispose set of compromiser@it In this case rules of
searching compromise can be expressed by:

Ic Im n

{cmp=>>" > (criterion(j)_loc(i) - locf, (i))*} > min (10)

j=1k=1 i=1

wherelc - compromise criteria number.

If we use the same methods (criteria) for cratinthfinal lists and compro-

n
mise stencil list than ingredientd’ (criterion(d)_loc(i) - locf, (i))*, where d
i=1
respect choosing the sammethod (or criteria) for both task, will be obvibus
equal zero, but it doesn't influence, at all, amaficompromise estimator level.

Conclusions

The experiences shows that combining methods aghberhoods, preference
and rough set for analysis ranking list is very tamable and permit to exploit
reach pat of information for crating final list andmpromise solution.

The situation doesn’t became more difficult everewlve dispose the same set of
methods for creating final lists and compromise li

Exploiting neighborhood theory we use tools formatiating inessential infor-
mation in opposite to some variant of preferendes;ubut using preference meth-
ods we can create reference stencils.

Specific character of rough sets theory descrigbemmit not only to reject objects
of inessential attributes values, but at the same to dislocated objects using
current compromise decisions.

Neighborhood estimators are less unambiguouslgbit regard inessential date.
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