
Scientific Research of the Institute of Mathematics and Computer Science

THE CONCEPTION OF CONCURRENT PETRI NET
AND ITS SYNTH+ESIS

Henryk Piech, Wioletta Skibińska

Institute of Computer and Information Science, Czestochowa University of Technology, Poland
e-mail:hpiech@adm.pcz.czest.pl

Abstract. Petri net is form of bipartite graph. Schemes in form of Petri (PT) net permit
modeling systems, objects, automata etc. Petri model becomes virtual prototype of repre-
sented system. Natural phenomena in PT nets is concurrent realized actions. It is guarantee
by organization of fired transitions system. That are realized sequentially as singly or
grouped procedures. In our approach we propose treat placements in standard connections
with input and output system transitions. It is deeply form of concurrent because of unify
structure of joining with all others placements. In this conception it’s also possibility to fix
sequence of fired transitions. Proposed concurrent PT net expand possibility of functional
model dealing by invariant combinations of weights structures.

Introduction

Petri nets are used in concurrent modeling. With help of Petri net convention
we can model distributed, real-time, operation systems [1-3]. Usually we support
projecting process by algebraic equations [4-6]. Models are often complex hence
their equivalent projecting mathematical analysis need complicated procedures
[7, 8]. We try to unify Petri net structure combining input, output transitions with
central node (placement). Such crated element has concurrent function structure
and set of transition’s parameters [9-11]. Prepared PT net scheme guarantee all
possible combination of connection between placements and transitions. Prospec-
tively, we want to elaborate system of organization optimal form and sequence of
fired transitions. In present moment we should define transition activation process
with preceding without supporting analysis. It is obviously far from optimal ap-
proach [12-15]. Additionally we propose algorithmic (but not algebraic) synthesis
system. The weights matrix is results of synthesis process [16-18].

1. Definition of concurrent PT net and its parameters

Concurrent PT net is connected with transitions t1,t2,…,tn which are fired
simultaneously (Fig. 1). Hence, we can depict them in form of one transition (low
scheme in Figs 1 and 2). So every placement is joined with several transitions on

Please cite this article as:
Henryk Piech, Wioletta Skibińska, The conception of concurrent Petri net and its synthesis, Scientific Research of the
Institute of Mathematics and Computer Science, 2010, Volume 9, Issue 1, pages 165-176.
The website: http://www.amcm.pcz.pl/

H. Piech, W. Skibińska 166

t1

t2

tn

t1-

upper scheme and with one transition on lower scheme. Obviously arcs have dif-
ferent weights: w1,w2,…,wn.

 w1
 w2
 p1 p2

 wn ……… ……...

 pn

 w1

 w2
 p1 p2

 …….……...

 wn
 pn

Fig. 1. Concurrent Petri net - conception of structure for decreasing number
of tokens in p1

Proposed functioning of concurrent PT structure from Figure1 can be described
as follows:

M’ (p(out(t)) = M(p(out(t))+w if M(p(in(t)) ≥ w
M’(p(out(t)) = M(p(out(t)) if M(p(int(t)) < w
M’ (p(in (t)) = M(p(int(t))–w if M(p(in(t)) ≥ w
M’ (p(in (t)) = M(p(int(t)) if M(p(int(t)) < w

where:
M(p) - number of tokens,
p(out(t)) - placement on output of t transition (successor),

p(in(t)) - placement on input of t transition (predecessor).
To supplement of full functioning structure performed in Figure 1 it’s enough to
change direction (arrows) on arcs.

The conception of concurrent Petri net and its synthesis 167

t1-

t1+

t1+

t1

t2

tn

 w1
 w2
 p1 p2

 wn
 pn

 w1

 w2
 p1 p2

 …….….
 wn
 pn

Fig. 2. Supplement of base structure for increasing number of tokens in p1

Joined structures is performed in Figure 3.

 p2 w+1 w -

1 p2
 w+2 w -2

 p1

 pn w+n w -n pn

Fig. 3. Joined structures with excluding double feedback (doted line) - base cell

Generally we assume that number of tokens is positive and not fractional. In
this case we can describe functioning process basing on both structures from Fig-
ures 1 and 2:

H. Piech, W. Skibińska 168

M’ (p)=M’ (p(out(t+) and p(int(t–))= M(p(out(t+) and p(int(t–)) + ∑
=

n

i 1
wi

+ – ∑
=

n

i 1
wi

–

 if (∑
=

n

i 1
wi

+ – ∑
=

n

i 1
wi

–) ≥ 0

M’ (p(out(t+) and p(int(t–))= M(p(out(t+) and p(int(t–))

 if (∑
=

n

i 1
wi

+ – ∑
=

n

i 1
wi

–) < 0 (1)

where: wi
+= wi if M(p(in(t+))≥ wi else wi

+ = 0
 wi

–= wi if M(p(in(t–))≥ wi else wi
– = 0

The full structure of concurrent PT net consist of n base cells (Fig. 4).

Fig. 4. Connections in concurrent PT net structure. It is conventional form because
of cells overlapping in practice

Information about weights is contained in transition matrix T (n×n) (there ap-
pears second index because of n cells):

 w1,1 w –1,2 ... w

–
1,n

 w+
2,1 w2,2 ... w

–
2,n

T =

 w+
n,1 w

+
n,2 ... wn,n

 c1

 cn

 c2

The conception of concurrent Petri net and its synthesis 169

where:
w+

i,j - weight of predecessor j placement transition (from i placement),
w–

i,j - weight of successor i placement transition (to j placement).

In our conception we can fire simultaneously both transition ti+ and ti– or only
one of them. But we don’t stay in position that it isn’t allowed to fire more transi-
tions at the same time, though it isn’t consider in this work.
For defining token change in i placement after firing ti+ and ti– we exploit i row
and i column of matrix T according (1).

2. Assumption to synthesis of concurrent PT net

The main problem of synthesis consists in calculate all weights of matrix T.
There we have n2 variables. In point of view of area of searching solution (s) it is
good information but in point of defining algorithm (or mathematical apparatus)
it is more complicate. Let’s look on initial data for synthesis net in assumption that
we want to model automata functioning on base of several sequenced states:
St(k),k = 1,2,…m. Firstly, let’s look on attributes with describe every state:
a(j),j = 1,2,…,v. We create matrix of attributes in sequenced states for which is
added second index (regarding state number): aj,k .

 a1,1 a1,2 ... a1,m
 a2,1 a2,2 ... a2,m

S =

 av,1 av,2 ... av,m

The assumption connected with matrix S consists in choosing set of placements

(cells) with cardinality equals v(n = v): token of every placement (cell) described
one attribute: M(k)(pj) = aj,k. Every change of state follows after firing succeeding
transition. Most of real automata return to initial set of attributes: a(j,1) = a(j,m),
j = 1,2,…,v.

Next problem bases on question; in which way are involved variables: w+
i,j and

w–
i,jin ordered states. It can be showed in pictorial form in Figure 5. These form is

adequate to table T. In succeeding transition firing are exploited previous (accord-
ing sequence of cells connections) determined weights.

Next assumptions is connected with ranges of weights. For simplify, we use the
same ranges for all weights, and integer their figure: rw = [wl, wu]. Hence, they
will change from wl to wu by one. It has sense to assume apriori that low bound
will be equal zero: wl = 0(ru = [0,wu]). Such result means that adequate connec-
tion is absent.

H. Piech, W. Skibińska 170

 p1 p2 p3 …… p(v) M(p)

p1 …… M(p1)

p2 …… M(p2)

p3 …… M(p3)

…… …… …… …… …… …… ……

p(v) …… M(p(v))

Fig. 5. Illustration of variables involving (common places - black fields) in process
of crating solution about state attributes (after determining first three tokens: M(p1),

M(p2), M(p3))

The assumption according algorithmic organization of finding set of solutions
consist in exploitation n*n cycles (loops):

for w[1,1]=0 to wu do
 for w[1,2]=0 to wu do

 for w[1,n]=0 to wu do
 for w[2,1]=0 to wu do
 for w[2,2]=0 to wu do

 for w[2,n]=0 to wu do

 for w[n,1]=0 to wu do
 for w[n,2]=0 to wu do

 for w[n,n]=0 to wu do
 begin
 Procedure Tokens_Calculation (M(k)(pl));
 ProcedureCompare_with_Model_Assumptions (M(k)(pl) = al,k)
 end;

Fig. 6. Algorithmic structure for organizing solution searchin.

The complexity of this algorithm is more then O(wun*n)=O(exp(n2ln(n))) be-
cause procedures Tokens_Calculation and Compare_with_Model_Assumptions
contain inner cycles (every of them).

The conception of concurrent Petri net and its synthesis 171

3. Practice realization of synthesis concurrent PT nets

In algorithmic variant of synthesis realization we can obtain several equivalent
solutions or none solution. It depend of number of states of modeled object (au-
tomata). Every new state of model functioning increases number of equations
about n = p. This information is important in theoretical approach basing on re-
solving system of equations []. Algorithmic approach can be generally performed
in form presented in Figure 7. Notation “data of model states ai,j “refers to set of
model-object attributes in all its states. The block “generation set of weights”
means that in cyclic stages will be sequentially create new set of weights in differ-
ent variations. Number of variations is equal wun*n. For token calculation we use
formula (1). The block “comparing with given data” means that state by state will
be checked all model’s attributes with set of current tokens. Full “agreement”
means that for all states, all attributes fit to tokens. Process of tokens creation has
sequential character because result from previous state becomes data to current
tokens set definitions.

Fig. 7. Idea scheme of concurrent PT net synthesis

In algorithmic approach we can easy overcame problems with solution (matrix
of weights) searching. When appears such problem we can exploit two convention:
– increase range of weights (wu = wu+d, where d∈ N and d>0),
– introduce new fiction placement (connected with fiction attribute of state-

ment): n = n+1(v = v+1).

generation set
of weights wi,j

set of tokens
calculation

comparing with given
data agreement

data of model
states ai,j

selection
of solutions

final structure
of concurrent PT

H. Piech, W. Skibińska 172

Last convention is connected with adding inequation in not strong Figure:
M(pn+1)≥ 0. This remark has obviously irrelevant character because of its multi-
variant conceptions. Returning to algorithm organization it is based on combinato-
rial variation structure. We will present such composition in two variants:
1) basing on conversion into wu-nominal number system,
2) basing on generation full set of variations
In both cases we try shortly and compact performed algorithmic structure from
Figure 6.
Let’s start from first variant (Fig. 8):

for x:=0 to wun*n–1 do
 begin
 z:=x;
 for y:=1 to n*n do
 begin
 w[((y–1) div n)+1,((y–1) mod n)+1]:=z mod wu;
 z:=z div wu
 end;

 Procedure Tokens_Calculation (M(k)(pl));
 Procedure Compare_with_Model_Assumptions (M(k)(pl)=al,k)

 end;
Fig. 8. Algorithmic structure for organizing solution searching (variant 1)

Description of algorithm start from organizing cycles for all numbers of possi-
ble situations connected with weights changing. During analysis every situation we
use Euclid’s approach systematically dividing n2 times number x by wu transform-
ing decimal x into wu-nominal x. Rest of division define particular weight value
(z mod wu). The indices of weight w[i,j] is defined as i = ((y–1) div n)+1 and j =
= ((y–1) mod n)+1. For every defined situation are provided token creation accord-
ing (1): Procedure Tokens_Calculation (M(k)(pl). After then are checked agreement
with model states attributes: Procedure Compare_with_Model_Assumptions
(M(k)(pl)=a1,k).

In second variant (Fig. 9) is created set of variations. It is connected with in-
creasing last weight element until it don’t exceed upper bound. After it takes place
all next elements (with parameter y) will zero out. Simultaneously previous ele-
ment (with parameter z) is increased under condition that it is less then upper
bound.

Let’s start from zero up all weights elements. It is assumed that last weight el-
ements is changed most quickly (x=n*n). When series of last elements are equal
wu sequentially is exploited jump label “leb”. When all weighs achieve level wu
(i:=wun*n) then it is the last state for analyzing tokens in reference to given model
attributes. This variant is more complex because contains additional cycle with
parameter y.

The conception of concurrent Petri net and its synthesis 173

Realizing procedure Tokens_Calculation (M(k)(pl)) we have to check m states of
tokens when the previous state is data base for next state (Fig. 10).

for x:=1 to n*n do

 w[((x–1) div n)+1,((x–1) mod n)+1] =0;
x:=n*n; z:=x;
for i:=1 to wun*n do
begin
 if w[((x–1) div n)+1,((x–1) mod n)+1] +1 ≤wu
 then w[((x–1) div n)+1,((x–1) mod n)+1]:= w[((x–1) div n)+1,((x–1) mod
n)+1]+1
 else
 begin
 leb: z:=z–1;
 if w[((z–1) div n)+1,((z–1) mod n)+1] +1 ≤wu)
 then
 begin
 w[((z–1) div n)+1,((z–1) mod n)+1]:= w[((z–1) div n)+1,((z–1) mod n)+1]+1

 for y:=x+1 to n*n do w[((y–1) div n)+1,((y–1) mod n)+1]:=0;
 end
 else goto leb;
 end;
Procedure Tokens_Calculation (M(k)(pl));
Procedure Compare_with_Model_Assumptions (M(k)(pl)=al,k)
end;

Fig. 9. Algorithmic structure for organizing solution searching (variant 2)

for j:=1 to n do
M[j,1]:=a[j,1];
for i:=1 to m–1 do
 for j:=1 to n do

 M[j,i+1]:=M[j,i];
 for k:=1 to n do
 begin

 if M[k,i] ≥ w[k,j] then u[k,j]:=w[k,j] else u[k,j]:=0;
 if M[j,i] ≥ w[j,k] then u[j,k]:=w[j,k] else u[j,k]:=0;

 M[j,i+1]:=M[j,i]+u[k,j]–u[j,k]
 end
where: i - number of state,
j - number of placement,

k - number of ingredient weight,
M[j,i] - value of token,
a[j,i] - value of attribute.

Fig. 10. Algorithmic structure for calculation tokens values

H. Piech, W. Skibińska 174

Procedure Compare_with_Model_Assumptions (M(k)(pl)=al,k) is very simple too
(Fig. 11).

for i:=2 to m do
 for j:=1 to n do
 if M[j,i] ≠ a[j,i] then go to neg
“agreement - there are found adequate set of weights”;
…………………

neg: “not agreement- there aren’t found adequate set of weights”;

Fig. 11. Algorithmic structure for checking attributes. All transitions are fired in particu-
lar states of attributes

Usually we obtain more then one solution - set of weights fulfilling “agree-
ment” conditions. In this case we chose set with the minimal number of connec-
tions (with maximal number of wi,j = 0) and minimal total sum of tokens (“final
structure of concurrent PT” in Fig. 7).

4. Applying the method of concurrent PT net synthesis
in modeling process

Ten attributes of 5 states of given object are presented in Figure 12. In the ex-
ample transitions are fired pairwise (ti+, ti–) for every central placement (see Fig.
2) and sequentially from 1 to n cell.

i a(i,0) a(i,2) a(i,3) a(i,4) a(i,5)
1 4 3 2 1 0
2 1 3 5 7 9
3 2 1 0 0 0
4 9 6 3 0 0
5 2 4 6 8 10
6 5 7 9 11 13
7 4 2 1 0 0
8 5 3 1 0 0
9 7 8 9 10 11
10 3 5 5 7 9

Fig. 12. Object attributes in all states

The conception of concurrent Petri net and its synthesis 175

The results in form of weights matrix are put in table in Figure 13.

 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

p1 0 2 0 0 0 2 0 0 0 0

p2 0 0 1 0 1 0 0 0 1 0

p3 2 0 0 1 0 1 0 0 0 0

p4 0 0 0 0 2 0 0 0 0 3

p5 0 2 1 0 0 0 1 0 0 0

p6 1 0 0 0 0 0 0 0 2 0

p7 0 0 0 0 0 2 0 1 0 1

p8 0 1 1 0 0 0 1 0 0 0

p9 0 0 0 0 3 0 0 0 0 1

p10 0 0 0 1 0 0 0 0 2 0

Fig. 13. Table of weights

According Figure 14 we build final structure of concurrent Petri net.

Fig. 14. Final structure of concurrent PT net - example

The sequences of fired cells be different. The form of fired transitions can has
single of grouped character (as in our example) according to particular object
states. It obviously influents on procedure Tokens_Calculation.

 c1
 c2

 c3
 c4

 c5

 c6
 c7

 c8
 c9

c10

H. Piech, W. Skibińska 176

Conclusions

Concurrent PT net permit on comfortable algorithmic synthesis structure mod-
eling object with given set of states. We can realized this process in different way
in depend on chronology and character of fired transitions. Hence we obtain dif-
ferent result - set of weights. The structure of algorithm in Figure 8 suggests the
possibility to realize organizing process in parallel variant dividing range [1, wun*n]
into possessed number of processors.

References

[1] Cortadella J., Jakovlev A., Rosenberg G., Concurrency and hardware design: Advances in Petri
nets, Springer-Verlag, New York 2002, 2549.

[2] Dadda L., The synthesis of Petri nets for controlling purposes and the reduction of their com-
plexity, Euromicro, 2002.

[3] Murata T., Petri Nets: properties, analysis, and applications, IEEE 1989, 77, 4, 541-580.

[4] Berthelot G., Transformations and decompositions of nets, Advanced in Petri nets, Springer-
Verlag, London 1987, 250, 359-377.

[5] Chiola G., On the structural and behavioral characterization of P/T nets, International Work-
shop in Petri nets and Performance Model, Toulouse 1993, 66-75.

[6] Jensen K., Rozenberg G., High-level Petri Nets - theory and application, Springer-Verlag,
Berlin 1991.

[7] Szpyrka M., Fast and flexible modeling of real-time systems with RTCP- nets, Computer Sci-
ence 2004, 81-94.

[8] Zuberek W.M., Timed Petri nets, definitions, properties, and applications, Microelectronics and
Reliability 1991, 31, 4, 627-644.

[9] Bowden F.D.J., Modeling time in Petri nets, Workshop on Stochastic Models in Engineering,
ACM Press, New York 1994, 228-239.

[10] Commoner F., Deadlocks in Petri Nets. Applied Data Research Inc., Wakefield, 1972.

[11] Marsan M.A., Balbo G., Conte G., Donatelli S., Franceschinis G., Modeling with generalized
stochastic Petri Nets, John Wiley and Sons, New York 1995

[12] Cerone A., Maggiolo-Schettini A., Time based expressivity of time Petri nets for system speci-
fication, Theoretical Computer Science 1999, 216, 1-53.

[13] Hollyday M.A., Vernon M.K., A Generalized timed Petri model for performance analysis,
IEEE, Transaction of Software Engineering 1987, SE-13, 12, 1297-1310.

[14] Peterson J.L., Petri net theory and the modeling of systems, Prentice Hall, New York 1981.

[15] Petri C.A., Advanced Course on General Net Theory of Processes and Systems, Springer-
Verlag, London 1979.

[16] Memmi G., Vautherin J., Analyzing nets in invariant method, Advanced in Petri nets, Springer-
Verlag, London 1987, 300-336.

[17] Valmari A., Petri Net Newsletter 1994, 46, 6-14.

[18] Yakovlev A., Gomes L., Hardware designed Petri nets, Kluwer Academic, Publishers, Norwell,
US 2000.

[19] Samolej S., Szmuc T., Time extensions of Petri nets for modeling and verification of hard real-
time systems, Computer Science 2002, 55-76.

