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Abstract. The numerical modelling of steel cast solidifioatiprocess in sand mould is
considered. The problem analyzed is described &ysyistem of partial differential equa-
tions supplemented by adequate boundary and icibiadlitions. The latent heat appearing
in the model of a casting sub-domain is treatedlie=cted interval value. The problem
formulated has been solved by means of intervékfuifference method with the approach
of directed interval arithmetic. In the final paftthe paper, results of numerical computa-
tions are shown.

1. Governing equations

Let us consider the solidification process in legeneous domain of the casting
(Q,) and mould Q) (see Figure 1).

mould

casting

Fig. 1. Domain considered

The energy equation describing the casting satigdifon has the form [1]

~ 0T,(Xx 1) 2
X0 CM—2===A D *Tyx ) (1)
where Cl(T) is the directed interval substitute thermal cafyaf2], A, is the
thermal conductivity,T,, X={x, y}, t denote the temperature, geometrical co-
ordinates and time of the casting sub-domain, espdy.
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In the case of steel cast solidification the foliogvapproximation of directed
interval substitute thermal capacity can be takém account [2]

C . T,>T,
< (1) 2 Q
Cl(T)_ Cp + T-T.' Ts STl ST|_ (2)
L s
Cs, T, <Tg

where T, , Ts correspond to the liquidus and solidus temperatuge is the di-
rected interval latent heat, , c are the volumetric specific heats of molten metal
and solid state, respectively, white =0.5(c, +cg).

For example, forc, =5.3895, T, =1470, T, =1505 and the interval latent heat
Q=(1885.275, 2083.72, the directed interval substitute thermal capadiy
T, D(TS, TL> is computed according to the rules of the diredtéerval arithmetic
[3, 4] (see Appendix)

Q ¢ 395, (1885.275, 2083.795_
T, -Ts 35 3)
(5.3895, 5.3895+( 53.865,59.585( 59.2545, 64%).

C,(T)=c, +

The considered equation (1) is supplemented btieegy equation concerning
a mould sub-domai®,

0T,(X,t) \
X [ 2: CZT:)\ ;l TZ(X,t) (4)

wherec, is the mould volumetric specific heat, is the mould thermal conductiv-
ity and T, is the mould temperature.

The energy equations for both sub-domains must upplemented by the
boundary-initial conditions

oT.( 1)
on (5)
t=0: T. (X, 0)=T,(x), e=12

XOT .0 dp(x tk= A,

and the continuity condition on the contact surfaegveen the casting and mould
N 0T (%, t) N 0T,(x, t)
X : " 9n "% on (6)
T,(X, t)=T,(x, t)
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2. Interval finite difference method

The energy equations (1) and (4) for directed uatelatent heat can be written
in the form [1]

o OT(X,t). L
X@ : c— =0 @ T(X,t)] 7)
where
XM ,: & C,(T), » i, )
X ,: & c,, = A,

The right-hand side of the interval equation (#) ba expressed as follows [1, 5]

. a(.oT) o, oT
0[O T(X, tH &(x&-ﬂ a—y(k@—y} (9)

Using the mean quotient definition, we can write

[ixM]” :1<T',T+>1—<T',T+>ij +E<T',T+>ij—<T',T*>2 10)

0X 0X h Ry, h R,
while
h h h h
01 = + ROZ = + (11)
2 2\ 2N 2,

are the thermal resistances from the nogiet¢ the nodes ‘1’ and ‘2’, respectively,
h is the grid step in the direction vhxis (see Figure 2).
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Fig. 2. 5-point star
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Analogically
0, AT T T AT T,
ay ay . k Ros K Ros
while
_h _h ~h _h
Ros —Iij +§3 Ros —m +m (13)

are the thermal resistances from the nadeto the nodes ‘3’ and ‘4’, respective-
ly, k is the grid step in the direction phxis.

Finally, for the timet ", the right-hand side of the interval equationd@) be
written as

o[o T(x,1)]'= %(<T_’T+>ltl (T, 7)Y
e UK EY - (UL A L A
ae(fr - T)e)

0.

IS

whereTNifj‘l are the directed interval temperatures in theraénbde at the begin-

ning of the time intervalAt, ®_ (e=1,2,3,4) are called the shape functions and
are defined as follows

®, =,

=
X‘IH

D, =, (15)

The left-hand side of the energy equation will bestituted by a differential
quotient

f f-1
i -

e T e e ETLAT T g

B i At
]
where 'I:i’j are the directed interval temperatures in theraénbde at the end of
the considered time intervalt .
For example, for T,0(T, T,), C,*=(59.2545,64.924f (see eq.3)
and T,/ =(1499.48,1501.2¢ the sign variables are of the form
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o(C ") =+, o(T};) =+, so the product of,\;' and T,; is computed as follows
(see Appendix)

é D:lu :<C1|] T1||)D-1IJ o(Cyij) Clij"(fm)l—_—l—lijf’(élll)>:
< lI] ll]_+’Clij+D-lij+>:<Clij_D-llj_’C I:rljj+>: (17)
(59.2545]1499.48, 64.9245 1501)%3( 88851, 97466
So, one obtains the following formula
T T"l s (T-T o

lej 1 1] Z

e=1 ROe

e

(18)

wheree denotes the main directioa$ 1, 2, 3, 4).
At last the approximate form of the energy equatsoof the following form

(1,7 = A () TS A (T T T ) o)

e=1

where

~ d, At x 4, -
A= A =1-3 A (20)
R <c , C > el
]
All this interval values must be calculated accogdio the rules of the
directed interval arithmetic [3, 4].
It should be pointed out that for the nodes in ¥i@nity of the boundary

I the approximation of operatdin‘(m 'I:)ij is formally the same.

3. Numerical examples

As an example, the 2D casting-mould system shovifigare 3 is considered.

The following input data have been introduced: iligs temperature
T, = 1505C, solidus temperatuil = 1470C, pouring temperaturé,, = 1550C,
initial mould temperaturel,, = 20°C, A,= 30 W/mK, ¢, = 5.904 MJ/K,
s = 4.875 MJI/MK, Q =(1885.275, 2083.72¢ MJ/n?, A, =1 W/mK, ¢, = 1.75
MJ/mPK

The problem considered has been solved using tpkcigxscheme of interval
FDM. The regular mesh created byx30 nodes with constant step h = 0.002 m
has been introduced, time sigfp= 0.1 s.

Figures 4 and 5 present the cooling curves at dues)from the casting sub-
domain. The dashed and solid lines denote the Iandrthe upper bounds of the
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temperature intervals, respectively. We can seeth®temperature intervals are
narrow and their width does not increase in the tcmnsidered.
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Fig. 3. Casting-mould system
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Fig. 4. Cooling curves at nodes 1 and 2 from thénggs
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Fig. 5. Cooling curves at nodes 3 and 4 from thénggs
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Figure 6 illustrates the heating curves at the sddman the mould sub-domain.
The temperature intervals’ width is very small.
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Fig. 6. Heating curves at nodes from the mould

Conclusions

In this paper the solidification process of theticgsproceeding in the mould is
analysed. The latent heat appearing in the appatiom of the substitute thermal
capacity has been assumed as interval value. Tolglgon discussed has been
solved using the interval finite difference method.

Directed interval arithmetic allows one to obta@rnow and convergent tem-
perature intervals, while classical interval arigtim gives large and divergent
temperature intervals [5, 6].
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APPENDI X

Directed interval arithmetic

Let us consider a directed intervalwhich can be defined as a §ebf all di-
rected pairs of real numbers defined as followg[3F]

a=(a",a"):={a0D|a a0 R} (21)

wherea” anda’ denote the beginning and the end of the intereapectively.
The left or the right endpoint of the interval can be denoted &, sD{k - } ,
wheres is a binary variable. This variable can be exmdsas a product of two
binary variables and is defined as

++=--=+ t-=-+=- (22)
An interval is called proper ia” <a*, improper if a~ =a* and degenerate if
a =a". The set of all directed interval numbers can bigten asD=P 0| ,
whereP denotes a set of all directed proper intervals landenotes a set of all

improper intervals.
Additionally a subseZ = Z, 0 Z[J D should be defined, where

z,={a0P|ax & a’} z,={@ 1|2 0 a} (23)

For directed interval numbers two binary varialdes defined. The first of them is
the direction variable and the other is the sigmalde

f < + f - +
r(a)=4" & =8 o(@)=1"" 220220 sopvz (29
, iIf a >a . if a <0,a" <0

The sum of two directed intervaI$§:<a',a+> and 6:<b',b+> can be
written as

a+b=(a +b’,a" +b"), 4&,b0D (25)
The difference is of the form

a-b=(a"-b’,a"-b7), &b0D (26)

The product of the directed intervals is describgdhe formula
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(a7 (bo®, o (o), 4,600\
(a7@® (@, a7 @O @), a0D\Z, i Z
) <a a(b) bo® r(a a(B) ma(ﬁ)r(é)>, anz, Hﬂ D\Z
alb= N (27)
<m|n a [, a H)) max(a b~ ,a H) > abbz,
<maxa [b',a*[lb) mna[ﬂ)*a[ﬂ) > a,b02Z,
0, (aDz,.80 z) da .6 z,)
The quotient of two directed intervals can be eritas
i <a“’(5) [ b7®  go® /b-f’(ﬁ)} , 4,b0D\Z
alb= (28)

<a—a(5) [ be®@ o) /b—a(ﬁ)f(é>>, alz,h] D\z

In the d_irected interval arithmetic two extra opera are defined, inversion of
summation
-pa=(-a’, -a"), aOD (29)
and inversion of multiplication
1/,a=(1/a",1/a"), a0D\Z (30)
So, two additional mathematical operations candiaed as follows
a-,b=(a"-b,a’-b"), &b0OD (31)
and

) <a_0(5) / b—g’(é)’ aa(B) /bg(é)>v abdD\Z
alpb=1) . (32)
<a"’(b) [b® go® /ba(b)>, afdz,m1 b\z

Now, it is possible to obtain the number zero bytsaction of two identical inter-
vals 8-, @ =0 and the number one as the result of the divigidg &=1, which

was impossible when applying classical intervahanietic [8].



