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Abstract. The numerical modelling of steel cast solidification process in sand mould is 
considered. The problem analyzed is described by the system of partial differential equa-
tions supplemented by adequate boundary and initial conditions. The latent heat appearing 
in the model of a casting sub-domain is treated as directed interval value. The problem 
formulated has been solved by means of interval finite difference method with the approach 
of directed interval arithmetic. In the final part of the paper, results of numerical computa-
tions are shown. 

1. Governing equations 

Let us consider the solidification process in heterogeneous domain  of the casting 
( 1Ω ) and mould ( 2Ω ) (see Figure 1). 

 

 

Fig. 1. Domain considered 

The energy equation describing the casting solidification has the form [1] 
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where 1( )C T�  is the directed interval substitute thermal capacity [2], 1λ  is the 
thermal conductivity, 1T , X = {x, y}, t denote the temperature, geometrical co-
ordinates and time of the casting sub-domain, respectively. 
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In the case of steel cast solidification the following approximation of directed 
interval substitute thermal capacity can be taken into account [2] 
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where TL , TS correspond to the liquidus and solidus temperatures, Q�  is the di-
rected interval latent heat, ,L Sc c  are the volumetric specific heats of molten metal 
and solid state, respectively, while 0.5( )P L Sc c c= + . 

For example, for 5.3895Pc = , 1470ST = , 1505LT =  and the interval latent heat 
1885.275, 2083.725Q =� , the directed interval substitute thermal capacity for 

1 ,S LT T T∈  is computed according to the rules of the directed interval arithmetic 
[3, 4] (see Appendix) 
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The considered equation (1) is supplemented by the energy equation concerning 
a mould sub-domain 2Ω   

 2 2
2 2 2 2

( , )
: ( , )

T x t
X c T x t

t

∂
∈Ω = λ ∇

∂
 (4) 

where 2c  is the mould volumetric specific heat, 2λ  is the mould thermal conductiv-
ity and 2T  is the mould temperature. 

The energy equations for both sub-domains must be supplemented by the 
boundary-initial conditions  
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and the continuity condition on the contact surface between the casting and mould 
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2. Interval finite difference method 

The energy equations (1) and (4) for directed interval latent heat can be written 
in the form [1] 
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where  
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The right-hand side of the interval equation (7) can be expressed as follows [1, 5] 
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Using the mean quotient definition, we can write 
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while 

 01 02
1 22λ 2λ 2λ 2λi j i j

h h h h
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are the thermal resistances from the node ‘i j’ to the nodes ‘1’ and ‘2’, respectively, 
h is the grid step in the direction of x axis (see Figure 2). 
 

 
Fig. 2. 5-point star 
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Analogically 
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while 

 03 04
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are the thermal resistances from the node ‘i j’ to the nodes ‘3’ and ‘4’, respective-
ly, k is the grid step in the direction of y axis. 

Finally, for the time 1ft − , the right-hand side of the interval equation (7) can be 
written as 
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where 1f
i jT −�  are the directed interval temperatures in the central node at the begin-

ning of the time interval t∆ , ( 1,2,3,4)e eΦ =  are called the shape functions and 

are defined as follows 

 1 2 3 4
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The left-hand side of the energy equation will be substituted by a differential 
quotient 
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where f
i jT�  are the directed interval temperatures in the central node at the end of 

the considered time interval t∆ . 

For example, for 1 ,S LT T T∈� , 1
1 59.2545, 64.9245f

i jC − =�  (see eq.3)  
and 1 1499.48, 1501.23f

i jT =�  the sign variables are of the form 
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1
1 1( ) , ( )f f
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1
f
i jC −�  and 1

f
i jT�  is computed as follows 

(see Appendix) 
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So, one obtains the following formula 
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where e denotes the main direction (e = 1, 2, 3, 4). 
At last the approximate form of the energy equation is of the following form 
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All this interval values must be calculated according to the rules of the 
directed interval arithmetic [3, 4]. 

It should be pointed out that for the nodes in the vicinity of the boundary  
Γ  the approximation of operator ( )λ

i j
T∇ ∇ �  is formally the same. 

3. Numerical examples 

As an example, the 2D casting-mould system shown in Figure 3 is considered. 
The following input data have been introduced: liquidus temperature  

TL = 1505°C, solidus temperature TS = 1470°C, pouring temperature 10T  = 1550°C, 
initial mould temperature 20T  = 20°C, 1λ = 30 W/mK, Lc  = 5.904 MJ/m3K,  

Sc  = 4.875 MJ/m3K, 1885.275, 2083.725Q =�  MJ/m3, 2λ = 1 W/mK, 2c  = 1.75 
MJ/m3K. 

The problem considered has been solved using the explicit scheme of interval 
FDM. The regular mesh created by 30×30 nodes with constant step h = 0.002 m 
has been introduced, time step �t = 0.1 s. 

Figures 4 and 5 present the cooling curves at the nodes from the casting sub-
domain. The dashed and solid lines denote the lower and the upper bounds of the 
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temperature intervals, respectively. We can see that the temperature intervals are 
narrow and their width does not increase in the time considered. 

 

 
Fig. 3. Casting-mould system 
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Fig. 4. Cooling curves at nodes 1 and 2 from the casting 
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Fig. 5. Cooling curves at nodes 3 and 4 from the casting 
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Figure 6 illustrates the heating curves at the nodes from the mould sub-domain. 
The temperature intervals’ width is very small. 
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Fig. 6. Heating curves at nodes from the mould 

Conclusions 

In this paper the solidification process of the casting proceeding in the mould is 
analysed. The latent heat appearing in the approximation of the substitute thermal 
capacity has been assumed as interval value. The problem discussed has been 
solved using the interval finite difference method.  

Directed interval arithmetic allows one to obtain narrow and convergent tem-
perature intervals, while classical interval arithmetic gives large and divergent 
temperature intervals [5, 6]. 
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APPENDIX 

Directed interval arithmetic 

Let us consider a directed interval a�  which can be defined as a set D of all di-
rected pairs of real numbers defined as follows [3, 4, 7] 

 { }, :a a a a a , a− + − += = ∈ ∈� � D R  (21) 

where a−  and a+  denote the beginning and the end of the interval, respectively.  
The left or the right endpoint of the interval a�  can be denoted as { }, ,sa s ∈ + − , 

where s is a binary variable. This variable can be expressed as a product of two 
binary variables and is defined as  

 + + = − − = + + − = − + = − (22) 

An interval is called proper if a a− +≤ , improper if  a a− +≥  and degenerate if 
a a− += . The set of all directed interval numbers can be written as = ∪D P I , 
where P denotes  a set of all directed proper intervals and I  denotes a set of all 
improper intervals.  

Additionally a subset = ∪ ∈P IZ Z Z D  should be defined, where 

 { } { }0 0= a a a = a a a− + + −∈ ≤ ≤ ∈ ≤ ≤� �P IZ P Z I  (23) 

For directed interval numbers two binary variables are defined. The first of them is 
the direction variable and the other is the sign variable 
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The sum of two directed intervals ,a a a− +=�  and ,b b b− +=�  can be  

written as 

 , , ,a b a b a b a b− − + ++ = + + ∈� �� � D  (25) 

The difference is of the form  

 , , ,a b a b a b a b− + + −− = − − ∈� �� � D  (26) 

The product of the directed intervals is described by the formula   
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The quotient of two directed intervals can be written as 
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In the directed interval arithmetic two extra operators are defined, inversion of 
summation  

 , ,a a a a− +− = − − ∈� �D D  (29) 

and inversion of multiplication 

 1 / 1 / , 1 / ,a a a a \− += ∈� �D D Z  (30) 

So, two additional mathematical operations can be defined as follows 

 , , ,a b a b a b a b− − + +− = − − ∈� �� �D D  (31) 

and 
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Now, it is possible to obtain the number zero by subtraction of two identical inter-
vals 0a a− =� �D  and the number one as the result of the division / 1a a =� �D , which 

was impossible when applying classical interval arithmetic [8]. 


