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Abstract. In this paper, the fundamental solutions methodht® Helmholtz eigenvalue
problem in two-dimensional elliptical shaped donsaame presented. The Green's functions
of the Helmholtz equation in the half-plane andhia quarter-plane are used. Numerical
examples of the eigenvalue problems in a half#tlipnd a quarter-elliptic domains are
given.

Introduction

The Helmholtz equation is obtained, for instangeubing separation method
to the wave equation [1]. This equation can betemitn the form

0%t +0%ft=0, (xy)OS 1)

where 02 is the Laplace operator aiiis the considered domain. In the case of
initial-value problems which are governed by thetaady diffusion equation as
a result of separation of time and the space vimsalihe modified Helmholtz
equation is acquired

02t -k?f=0, (xy)OS (2)

The constants2 andk in equations (1) and (2), respectively, are inticat by
separation of variables. These equations are caoeaplyy conditions at the bound-
ary 0S of the domairs. We assume here the Dirichlet boundary condition

f(xy)=0, (xy)Oos (3)

The differential equation (1) or (2) and boundaoypdition (3) form the Helm-
holtz eigenvalue problems. The problem (1)-(3) édliptic domain S (elliptical
membrane) was the subject of the papers [1-3hikgaper, we consider the half-
elliptic and the quarter-elliptic domains. An apgiroate solution of the problems
will be derived by using the fundamental solutioethod (MFS).
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The MFS is a boundary method which does not invdigeretization and inte-
gration. The idea of the method is the usage afeat combination of fundamen-
tal solutions with sources located at fictitiousrm® outside the domain of the
problem. The fundamental solution is the Greengfion G defined in an infinite
domain. The function@(x, y; Qk) satisfy the Helmholtz equation in the dom&in

for each source point§, (&.77,) located outsid& In the MFS, we approximate
the solution of the problem by a function of thenfid?2]

w,(%, )= ¢ G(x Vi &) (4)
k=1
The approximate solutiomy, satisfies the differential equation (1), and iedo

not satisfy the boundary condition (3). The comditcan be satisfied approximate-
ly by asuitable determination of the coefficients k = 1, 2,...n. For this pur-

pose we use the least square method. First we ettbespointsP; (x;,y; ),j = 1,
2,....n, located on boundargS of the domairs. Next we definite the function

f((cl,cz,...,cn)):zn:[zn: CkG(P]-;Qk)T 5)

j=1[ k=1
This function has a minimum, if the following syst®f equations is satisfied

Ac=0 (6)

where A=la, ] ac=36[.Q)e(.Q) c=lo e . ol

j=1
For a non-trivial solution of the system (6), thetetminant of the matriR is
set equal to zero, yielding the eigenvalue equation

detA(Q) = 0 @)

Equation (7) with the unknows?, must be solved numerically to get the eigenval-
ues. The eigenfunctions for corresponding eigermsa, m= 1, 2,..., are given
by (4) where the coefficients, k= 2,...n, are derived dependent @p fromn-1
equations of the system (6).

1. Fundamental solutions

The fundamental solution of the differential eqaat{1) in the half-plane:
- < x<o, y=0, is a function (Green’s functiol®, which satisfies the follow-

ing equation
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0°G+Q*G =3(x~¢)aly-n) (8)

whered(') is the Dirac delta function. The solution of tkeiguation with Dirichlet
boundary condition:f (x,0)= 0, can be derived by using double Fourier transform.

The transform is defined by the two relationships

FIG] =G (a.8.6.:1) = [[G(x.y.&.n)e " sin By dxdy 9)

G(x.y..1)= JJG (@.8.£.:n)e”*sinByda dp (10)

where G is the Fourier transform of the functi@ If we multiply both sides of
equation (1) byd “*sin By , integrate over the half-planeo <x<ow, y> dhd
use the properties of Fourier transform, we obtiagnalgebraic equation

(o*+ 7 -0%JG (@.p.6.n) =" sing (12)

Using (11) in equation (10), we have
G(x,y,&,n)= = ”mei"<x-f)sin,3ysin,3/7dad,3 (12)
or after transformation

-(x-¢) B2-a? [cosB(y-n)-cosp(y+n)dB (13)

'3
Slsén)= g | e

Finally, the Green’s function for Helmholtz equation the half-plane with Di-
richlet boundary condition can be written in thenfio

Gl .&.m)= 5| MO @lc-eF +(y=n) |- @fbx-eF +(y+a) )| 1)

where H ([)] is the Hankel function of the first kind and zewraler,i =+/~1.

Similarly, the Green’s function for Helmholtz equat (1) in the quarter-plane
with boundary conditionsG|X:0 =0, G|y=0 =0, can be obtained. The function has

the form



80 S. Kukla

G(x,y;&.n)= [ (Q\/ 2) Hl(Q\/ y+/7)j
—Hél)[QJ(x+f)2+(y—r/)2j+H1[9Jx+f “ly+n) ﬂ

(15)

The Green’s function (14) or (15) are used in eigéure equation (7).

2. Numerical examples

Applications of the fundamental solutions methothwise free space Green’s
functions are widely presented in literature (fastance the papers [1-3]). In this
paper, the method with using Green’s functions Wwisiatisfy boundary conditions
on a part of the edges of the considered domairoisosed. The function with free
parameters as a solution of the differential equais assumed. This function sat-
isfies boundary conditions on a part of the ed@és presented numerical exam-
ples deal with eigenvalue problems for Helmholtzan in half- or quarter-
elliptic domains. The considered domains with seusad collocation points are
shown in Figure 1.

The Hankel function H(gl), which occurs in equations (14)-(15), is the

complexvalued function and that way the left hand sidehef equation (7) takes
the complex values. Therefore, we introduce a fondt defined as

Y (b)

(a)

Fig. 1. Geometry configuration of the considerechdims with collocation points;
on the elliptical arch and source poii@@s on the circular arch; a) half-ellipse domain,

b) quarter-ellipse domain
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F(Q)=|detA(Q) (16)

where the symbo||[]] denotes a modulus of a complex number. The mimihthe

functionF determine roots of equation (7).

The eigenvalues of the Helmholtz operator are tthgufency parameters of free
vibration of a membrane. The first ten frequencyapeeter valueQ,, n = 1,
...10, of the half-elliptic membrane with clamped esl@re presented in Table 1.
The calculations were performed for various valoesemi-diametersratio a/b of
the half-ellipse. For the half-circular membraaéh(= 1.0) the frequency parame-
ters determined by the FSM are compared with tleetegigenvalues which are
obtained as roots of equatiod'm(Q)zo, m=1, 2,... . For assumed number of
sources if = 18), small differences of the results calculabgdusing MFS and
exact values are observed.

Table 1

Eigenvalues 2, of the Helmholtz operator in a half-élliptic domain obtained by
MFESfor various values of semi-diametersratio a/b

ab=1.0 ab=15 | ab=20 | ab=3.0
n FSM Exact FSM FSM FSM
1 3.83170 3.83171 3.54484 3.42588 3.32123
2 5.13562 5.13562 4.33781 3.99048 3.67965
3 6.38016 6.38016 5.16984 4.58509 4.05345
4 7.01559 7.01559 6.66668 6.55554 6.45773
5 7.58834 7.58834 6.02774 5.2039] 4.44104
6 8.41724 8.41724 7.43162 7.09940 6.80660
7 8.77148 8.77148 6.90191 5.84208 4.84093
8 9.76102 9.76102 8.22539 7.66086 7.16374
9 9.93611 9.93610 7.78507 6.49552 5.25169
10 10.17347 10.17346 9.8019Q 9.69347 9.59771

In Table 2, the first ten frequency parameter valiog one-quarter of the ellip-
tic membrane with clamped edges are given. In F8& Green’s function for
Helmholtz equation in the quarter-plane with Ditathboundary conditions was
used. The results obtained for the circular sebtoFSM are in agreement with
exact ones.
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Eigenvalues (2, of the Helmholtz operator in a quarter-elliptic domain for various
values of semi-diameters ratio a/b

able 2

alb=1.0 ab=15 | ab=20 | ab=3.0
: FSM Exact FSM FSM FSM
1 5.13562 5.13562 433781  3.99048 3.67965
2 7.58834 7.58834 6.02774 5.20394) 4.44105
3 8.41724 8.41724 7.43162]  7.00940  6.80660
4 9.93611 9.93611 7.78569 | 6.49544 |  5.25170
5 11.06471 11.06471 9.04446 823843  7.52872
6 11.61984 11.61984 10.55524  10.23049  9.943%5
7 12.22510 12.22509 9.56317  7.83571  6.10097
8 13.58922 13.58929 1074558  9.43641  8.28068
9 14.37240 14.37254 12.12377  11.34038  10.65190
10 14.79588 14.79595 13.68776  13.36692  13.08285

Conclusions

The Helmholtz eigenvalue problems in the half- godrter-elliptic domains by
using the method of fundamental solutions have Ipeesented. The fundamental
solution of the Helmholtz equation in the half-pawas derived. In order to de-
termine the eigenvalues, the minimum of a real tioncwas found. The source
points occurring in the approximate formula of tb&ution were selected on
a circle in the half-plane (or in the quarter-plamaitside the considered half-
elliptic (quarter-elliptic) domain. The comparisohnumerical results shows that
high accuracy of the calculation is achieved fosa8rces.
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