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Abstract. The damage evolution occurring in a set of elemtated in the nodes of the

supporting two-dimensional grid is analysed witttie stochastic approach. The element-
strength-thresholds are drawn from a given prolighilistribution and the elements are

treated as fibres within the Fibre Bundle Modeltfelement fails, its load has to be trans-
ferred to the other intact elements. For differgmt geometries we compare the evolution
of the number of intact elements under the loath waspect to three different load transfer
rules: the global, the local and recently introdlise-called Voronoi load transfer rule. Our

example system is an array of nanopillars.

Introduction

An evolving damage is an irreversible process cautie progressive destruc-
tion of the system components. The formation oftfrees is initiated by the local
microcracks, which grow when the local stress edsdbe threshold strength of
the material. At some concentration, microcrackst$b act coherently to enhance
the local stress and induce more failures.

Knowledge of the fracture evolution up to the glohgture and its effective
description is important for the analysis of thechmnical behaviour of the sys-
tems in response to the applied loads. From theretieal point of view the under-
standing of the complexity of the rupture proceas hdvanced due to the use of
lattice models. An example of great importancehis flamily of transfer load mo
dels, especially the Fibre Bundle Model (FBM) [145] the FBM a set of elements
(fibres) is located in the nodes of the supportatfjice and the element-strength-
-thresholds are drawn from a given probability riisition. After an element has
failed, its load has to be transferred to the oth&act elements. Three different
cases are considered: the global load sharing (GU®) load is equally shared by
the remaining elements, the local load sharing (LL8nly the neighbouring ele-
ments suffer from the increased load and the Vartwed sharing (VLS) - the
extra load is equally redistributed among the el@sdying inside the Voronoi
regions [6, 7] generated by a group of elementtralg=d in subsequent intervals
of time [8, 9].
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Our paper is motivated by uniaxial tensile experitaeon nanoscale materials
that confirm substantial strength increase viasize reduction of the sample [10-
-13]. Especially studies on arrays of free-standiagopillars subjected to uniaxial
microcompression reveal the potential applicabitifynanopillars as components
for the fabrication of micro- and nano-electrometbal systems, micro-actuators
or optoelectronic devices [10]. The aim of this idrution is to study the failure
progress in an array of vertically oriented, amaktafree metallic nanoscale pillars
subjected to an applied load. To illustrate theavedur of the system, we map the
array of nanopillars onto the surface with two-ealtheight function which corre-
spond to intact and damaged pillars.

We apply the FBM to simulate failure by stepwisewnulation of the de-
structed pillars and we compute the number of teps elapsed until the array of
pillars collapses. Numerical examples are presetdedemonstrate the dynamic
transformation of the rough surface evolving betweeo flat states: from all in-
tact to all deformed pillars.

1. Mathematical mode

Consider an array oN pillars located in the nodes of the supporting thixo
mensional lattice. The ensemble of pillars is scigi@é to an instantaneous longitu-
dinal load F which is kept constant in time with a time si#p considered here as
a time scale. Under the work regime the pillarsainintact or some of them are
damaged. Lemn, (r) denote the number of pillars damaged at the time [At .

The number N,(r) of intact pillars and the cumulative number
Ny (7)=ny (1) +n(2) +--- +n, (7 =1) of pillars damaged prior ta evolve in
time with the constraints: N=N,(7)+N,(r), N=N,(0)=N, () and
N4 (O) = 0. To each pillarx, we assign a critical load, which is randomly dis-
tributed according to a distributioR, . When the loadf, (r) applied on a pillar

X is bigger thanog,, the pillar crashes. Any damage redud‘es(r) and causes
a further increase of local loads.

1.1. Theload transfer rules

Since the load valu€& applied at each timeé remains constant an, dimin-
ishes the loadf locally felt by each pillar in subsequent timerigsses by an
amountdf . This load increase is not uniform with respecalicdhe intact pillars,

as it is assumed in the GLS version of the FBM, nastricted to a nearest neigh-
bourhood of the destroyed pillar in accordance WithLLS rule [2].
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The VLS rule for the load-increase allocation ifirtkd as follows [9]. A set of
N, (7) pillars is split inton, (7 —1) subsets grouping together pillars lying inside
the Voronoi regions generated b)g(r—l) pillars destroyed in the time -1.

The load, previously carried by each of the damauikaks is now equally distrib-
uted among the pillars belonging to the approphé&ieonoi region. More precise-
ly, if AV,, with k intact pillars, is the Voronoi region of the pilldestroyed at

the site x then the load f(7-1) is equally redistributed, with
of (7)=f (7 -1) /k, among all the intact pillars inside ¥, .

1.2. Two dimensional lattice geometries

As it was already mentioned we locate the pillarshie nodes of two dimen-
sional lattices. In this work we analyse only feg@arrangements, namely triangu-
lar, square and hexagonal symmetries shown in €igjuil he lattice is represented
by a set of nodes and edges connecting the paingighbouring nodes. The dis-
tance between two nodes is defined as the numbedgds contained in the short-
est possible path between these nodes. Aforemeutitattices differ from each
other in respect to so-called coordination numbesf a node which is defined as
the number of its nearest neighbours.

(b) (€)

Fig. 1. Lattice geometries: a) hexagonal, b) squgreiangular

1.3. Therough surface representation of the damage evolution

We map the array of nanopillars onto the latticéhviivo-valued height func-

tion h, (7):

1 if thenodemisoccupiedy theintactpillar,
hm(r)={ PIEEY P (1)

0 otherwise
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Within this mapping the dynamics of the model carsben as a rough surface
evolving between two flat states: starting withimitially flat specimen we apply
the load, thus the pillars start to be destroyed &ter the last pillars fail the sur-
face becomes flat. Figure 2 illustrates such serfac some time . Thus, the way

the numberN, (r) of intact pillars changes under the load can lagadterised by
the surface width [14, 15], defined as

W2 (@)=N" > [hy(1) =(h(r))]* (2)

1<ms<N

Where<h(r)) is the average height over different sites at time

Fig. 2. An example of rough surface with two-valdreight function defined by (1).
lllustration for the set of nanopillars on the squkattice

2. Numerical modelling

We realised numerically the dynamic formation oé lough surface for two
system sizesN = 25x10° and N =10*. Calculations have been done for three
types of lattice, namely for hexagonal, square taiathgular symmetries. In order
to obtain accurate results simulations have bedonmeed many times.

Average values of time steps of damaging processshown in Table 1. As
might be expected the geometry of lattice is inate forthe GLS scheme. In this
case we obtained almost equal mean values of tieps ®fthe damaging process
for different lattice geometries. Fthe LLS schemethe damage process the
fastest fomtriangular lattice anthe slowest for a hexagonal lattice, so the greater
number of neighbours the fastéde damage process. Similarly tihe GLS, forthe
VLS rule the damaging process lasts almost the sameer of time steps irre-
spective of lattice geometry.
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In general, as can be seen in Tabl¢hk,damage process ke fastest forthe
GLS scheme and slowest fitte LLS scheme. Thus, the VLS rule is intermediate
form of load transfer between these extreme cases.

Table 1
The mean values of time steps of damaging process
Load transfer rules
System size Lattice symmetny
GLS VLS LLS

hexagonal 12.086 16.528 18.480

N = 25x10° square 12.076 16.334 18.147
triangular 12.022 16.551 16.584

hexagonal 11.800 17.836 19.764

N =10* square 11.787 17.516 19.296
triangular 11.797 17.826 17.521

The parameters of the model introduced in Sectiavefe the random critical
loads g, with theirs probability distribution function®,, k=12,...,N, and the

total load F = fo LN . Here, f, = f (7 =0) is the initial local load. In our simula-
tions f, =1. Since the pillars are mechanically independenassime thav, are
quenched random variables uniformly distributed [ora -Ao,0y +Aa], with
0, =1.65[f, = 1.6t and Ao =0.75[F, = 0.7%. We consider the following proper-
ties resulting from the VLS rule:
— evolution of the number of damaged pillayg(7),
— the number of intact pillars per Voronoi region(z)) = (N, (7)), .

These properties are distributed randomly and weeirgterested in how they
vary in time. Next we investigate the statisticdla@cteristics ofn (r) and
Ny (r) For this purpose we numerically construct distidns of these quantities

for different lattice geometries as well as fofeliént system sizes.
Figures 3 and 4 show the surface widtff(r) for the VLS and the LLS

schemes, respectively. From Figure 3 we see thath#® VLS rule geometry of
l[attice is irrelevant, because values of surfaddtlware almost the same for differ-

ent lattice types. For LLS scheme in the initialggts the values of/*(r) behaves
similarly irrespective of lattice type. Since thalue of W?(r) reaches maximum,
the values ofW?(r) for a triangular lattice start to vary from thasigtained with

the use of square and hexagonal ones.
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Fig. 3. The mode of surface width (2) ws.with the VLS rule for an array dfo* pil-
lars. Comparison of lattice geometries: hexagociatl€), square (square), triangular (di-
amond)
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Fig. 4. The mode of surface width (2) ws.with the LLS rule for an array 02.5x10°
pillars. Comparison of lattice geometries: hexady¢ciecle), square (square), triangular
(diamond)

Figures 5 and 6 show the modes of the surface vidtlr) obtained within
three different load transfer rules. From thesaufdg we see that almost half of
the time the dominant value ¥ (r) for the VLS rule lies between the lines cor-
responding to the GLS and the LLS rules. For timaiging time the behaviour of

the VLS and the LLS is similar however the numdricdues predicted by these
rules differ.
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Fig. 5. The mode of surface width (2) vsfor an array of25x10° pillars on the hexag-
onal lattice. Comparison of load transfer rules: LS (square), the LLS (diamond) and
the VLS (circle), the modes are taken froni $4@mples for each rule

0.25

0.2
<W3(7)>
0.1

0.05

0 2 4 6 r 10 12 14 16 18

Fig. 6. The mode of surface width (2) vsfor an array ofL0* pillars on the triangular
lattice. Comparison of load transfer rules: the G&@uare), the LLS (diamond) and the
VLS (circle), the modes are taken front Bamples for each rule

The quantities of main interest arac;(r) (number of damaged pillars) and
<ni (r)> (number of intact pillars per Voronoi region).

Figures 7 and 8 illustrate the evolution of the mealue ofn, (r) for the VLS
and the LLS rules, respectively. In Figure 7 we pare the results obtained with
the VLS rule for hexagonal, square and triangu#tides. Throughout the evolu-
tion the results obtained for aforementioned latgeometries are very similar to
each other. In the case of the LLS rule, as weseanin Figure 8, values o (r)
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for hexagonal and square lattices are similar th @gher. For the triangular lattice
in the middle stages the number of damaged pilkagreater in compare to the
hexagonal and square ones. In the final stage mérerentn, (r) decreases rap-
idly for triangular lattice, while for the hexagdrend square ones this process is
more smooth.
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Fig. 7. Evolution of the average number of damafgements<nd> with the VLS rule.
Comparison of lattices: hexagonal (circle), squaggigre), triangular (diamond). Here,
N =10* and the averages are taken overskinples
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Fig. 8. Evolution of the average number of dama@ements<nd> with the LLS rule.
Comparison of lattices: hexagonal (circle), squagriare), triangular (diamond). Here,
N = 25x10° and the averages are taken ovetsdinples

In Figures 9 and 10 we show the evolution of themealue ofn, () for tri-
angular and the hexagonal lattices. However thegeds present the difference of
(nd> for the GLS, the LLS and the VLS rules. In theasas throughout the evolu-
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tion the results of VLS are closer to these oflth8 than to the result of the GLS.
Within the GLS rulen, (7) grow rapidly before the system fails whereas bibté,
VLS and the LLS rules predict rather smooth extorctof the quantity of de-

stroyed pillars.
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Fig. 9. Average number of damaged piIIéng} vs 1 for hexagonal lattice. Comparison
of load transfer rules: the GLS (square), the Ldi@riond) and the the VLS (circle),
N =10* and the averages are taken ovetsdinples
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Fig. 10. Average number of damaged piIIéng) vs 1 for triangular lattice. Compari-

son of load transfer rules: GLS (square), LLS (diad) and VLS (circle) N = 25x10°
and the averages are taken ovetsdimples

Our second quantity of interes{n (r)> is computed for the population of10
arrays of 10 pillars and thus it gives the results for the anriety of Voronoi

regions. This quantity measures the typical nunabgmillars which share the load
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carried by one, previously destroyed pillar. InUfigy11 it has been shown compar-
ison of number of intact elemen(xai (7)) per Voronoi region for different lattice
types. However, the evolution (Z(h(T> is similar for these lattices, there is
a noticeable distinction. Especially in the eatyges, the value ofn (r)> is or-
dered according to the values af namely it is highest for triangular lattice
(z=6) and lowest for hexagonal lattige=  3).

30

0 2 4 6 8 e 12 14 16 18

Fig. 11. Average number of intact eIeme(ms) per Voronoi region vg with the VLS

rule. Comparison of lattices: hexagonal (circlelyag (square), triangular (diamond),
N =10* and the averages are taken ovetsdinples

Conclusions

Numerous works have been done on the FBM gendialisaéApart from the
previously mentioned two extreme approaches, th& @hd the LLS, there are
also mixtures of them and models with long-rangadltransfer rule [16]. Besides
the FBM, other approaches were used to study Huwuire evolution in solids me-
chanics [17, 18]. Especially the models with aatle range of interactions.

Depending on the stage of load exposure the damagjaetion according to the
VLS rule behaves like the GLS (early stage) or th& (later stage) rules. It is
worth to mention that the Voronoi volumes varyimé and so the VLS is range-
variable rule.

In the present work, the regular tessellations différent load transfer rules
have been exploited to analyse the damage evolofitime family of nanopillars.
Even though the pillars are mechanically independegir arrangements can in-
duce a kind of correlated-damage-evolution, esfigcéaen in the framework of
the VLS rule.
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