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Abstract. The generation of priority vectors from pairwise comparison matrices is an essen-
tial part of the Analytic Hierarchy Process. Apart from the well-known Saaty’s right eigen-
value method various other procedures have been proposed for priority modelling. Two 
most important alternative approaches are the statistical estimation techniques and methods 
based on constrained optimization models. In the paper a new goal programming model for 
deriving priority vectors and for measurement of consistency is proposed. In this approach 
the idea of goal programming is combined with the idea of Saaty’s eigenvalue method. 
Some features of the method are studied via computer simulations.  

Introduction 

Analytic Hierarchy Process (AHP), since its invention, has been a tool at the 
hands of decision makers and researchers. Now it is one of the most widely used 
multiple criteria decision-making tools [1-3]. In that method, pairwise comparisons 
are performed by the decision-maker (DM) and then the pairwise comparison ma-
trix (PCM) is a base for deriving the weights measuring the relative importance of 
the alternatives in the problem. The weights form so-called priority vector. By 
deriving priority vectors for all matrices in the hierarchy created for given decision 
problem, it is possible to perform standard AHP aggregation and obtain the final 
vector of the overall priorities. Thus generating priority vectors from pairwise 
comparison matrix is the core of the AHP. In developing the AHP Saaty [4, 5] sug-
gested the right eigenvalue prioritization method (REM). In this approach, the 
priority vector is obtained as the normalized principal right eigenvector of the 
PCM corresponding to the largest eigenvalue which is simple and its existence is 
guaranteed by Perron’s Theorem [6]. Although the REM remains perhaps the most 
popular prioritization technique, during last three decades a number of other  
methods  have been proposed in the literature. Among them are the methods based 
on the statistical approach to the prioritization problem [7-9], and  methods based 
on constrained optimization models [10-15]. However, each known method has its 
advantages and disadvantages and thus some literature argue that one method is 
better than another while other authors hold an opposite position. One can find in 
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the literature number of papers devoted to comparative studies of various prioriti-
zation methods, [16-21]. Several authors suggest also combining different prioriti-
zation techniques to obtain better estimates of the underlying true priority vector, 
see e.g. [12, 22]. 

In the following section we state the prioritization problem formally. Section 2 
briefly reviews the main prioritization approaches. Next we introduce a new meth-
od which combine the goal programming idea with the idea of the REM. This ap-
proach provide us not only with a new and relatively simple prioritization tech-
nique but also with intuitive measure of consistency of the decision-maker judg-
ments. The last section presents the results of the simulation study in which our 
method is compared with the REM.  

1. The problem - definitions and notation  

A basic assumptions of the AHP is the existence of a unique (up to multiplying 
constant factor) natural vector of priorities w = (w1,…,wn)’ of n alternatives with 
respect to a given criterion. Commonly the priority weights wi, i = 1,…,n, are cho-

sen to be nonnegative and normalized to unity: .1=∑
n

i iw  It is also assumed that 

priority ratios aij = wi/wj can be translated into verbal expressions  and that people 
are able to  estimate these priority ratios with the help of translations rules. Tables 
with such rules proposed by Saaty are available in the AHP literature, see e.g. [5, 
23]. Based on the assumptions, in the conventional AHP a decision-maker esti-
mates ratios of priorities, which form the pairwise comparison matrix A = [aij]nxn. 
Typically, the input data of PCM is collected only for the upper triangle of the 
matrix A, while the remaining elements are computed as the inverse of the corre-
sponding symmetric elements in the upper triangle i.e. aij = 1/aji. Such a PCM is 
said to be  reciprocal (RPCM). This method of data collection (leading to RPCM) 
forces some consistency of judgments which is not always natural, [7, 19, 21]. 
Some authors argue, see e.g. [7, 21], that enforcing the kind of consistency on the 
input data creates unnecessary dependency among observations and loses addi-
tional information contained perhaps in the elements of the lower triangle of A 
what and may lead to worse estimates of the priorities.  

PCM is said to be transitive if the following condition holds: if an element aij is 
not less than an element aik then aij ≥ aik for i = 1,…,n.  

PCM is said to be consistent (CPCM) if it is reciprocal and its elements satisfy 
the condition: aijajk = aik for all i, j, k = 1,…,n. A necessary and sufficient condition 
for a positive matrix A to be consistent is aij = wi/wj  i, j = 1,…,n.     

However, it is obvious that in reality it cannot be expected that the elements of 
PCM give exactly priority ratios. The human mind is not a perfect measurement 
device. Questions such as “compare - in a ratio scale - the importance of various 
features of your house”, or “tell me, how many times the student A is better in 
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mathematics than the student B” do not have a precise answer. The answers (eva-
luations of the ratios) may depend on personal taste, experience, specific knowled-
ge, the judge temporary mood and temper and may vary in time. We also cannot 
neglect rounding errors which can be quite big if we use integers and their inver-
ses. Therefore typically, even if the comparisons are done very carefully, PCM is 
inconsistent and we have to express the relation between the PCM elements and 
the priority weights in the form 

 
j

i
ijij w

w
ea =  (1) 

where eij is a perturbation factor which is expected to be near 1. In the statistical 
approach the factor is interpreted as a realization of a random variable.   

The fundamental problem of the AHP is how to determine the “true” priority 
vector given the PCM. Another problem connected with the theory is how to mea-
sure the degree of inconsistence of the PCM, because the significant violations of 
the consistency, may cause the usefulness of the data questionable.  

2. Prioritization methods 

We cannot expect to extract the true priority weights based on the given PCM, 
because of the perturbations in judgments, which can be considered as an uncon-
trollable and/or random process. Therefore we have to be content with good esti-
mates. Several approaches for deriving the priorities will be listed and briefly de-
scribed in this section.   

2.1. Right eigenvalue method 

The REM was fully developed, described and applied in the AHP context by 
Saaty [4, 5]. Now it is the first and most commonly used prioritization method.  

In a perfect judgment case where are no perturbations (eij = 1) we have 

 Aw = nw (2) 

Thus in this case the priority vector w can be calculated by solving the eigen-
vector equation (2). It turns out that for a consistent matrix A the number n is the 
principal eigenvalue of A, i.e. the largest solution of the characteristic equation: 
det(A – λI ) = 0. It is also the only nonzero eigenvalue in this case. Saaty proposi-
tion when the matrix A is perturbed is to use the normalized right eigenvector as-
sociated with the largest eigenvalue as an estimate of the true priority vector. Thus 
to obtain the estimate we need to solve general eigenvector equation  

 Aw = λmaxw (3) 
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where λmax is the principal eigenvalue. For an arbitrary positive reciprocal matrix 
A the value λmax is always real, unique and not smaller than n. 

Although the method has attracted much attention it also has been criticized in 
the literature. First of all it was design only for reciprocal matrices, and as we have 
mentioned earlier, the method of gathering information leading to RPCM is not 
natural and usually cause the loss of information. Secondly, for inconsistent matri-
ces of order greater than 3 the solution is not invariant under transposition, see e.g. 
[16, 18]. This may cause difficulties in the interpretation of the weights values. 
Another criticism is connected with the fact that unlike most estimation procedures 
REM does optimize any criterion function and thus is difficult to interpret or to 
compare with other estimates, [11, 16]. Another share of criticism is connected 
with so called rank reversal phenomena, [23, 24]. It was also noticed that the  
Saaty’s method is prone to influence of outliers in the data, [9, 25]. Finally, the 
REM requires complex calculations involving an iterative procedure, see e.g. [19]. 

2.2. Constrained optimization based methods (COBM) 

COBM are generally the methods which look for a vector of weights w which 
produces a pairwise comparison matrix M (w), satisfies some conditions (such as 
positivity of coefficients, normalization etc.) and minimizes the distance to the 
given PCM, say A, with respect to a given criterion function measuring the dis-
tance. The most popular one is called the logarithmic least squares method 
(LLSM), [10-12, 19, 21]. In this method the criterion function measuring the dis-
tance between A and M (w) is given by  

 ∑ ∑
= =

+−=
n

i

n

j
jiij wwad

1 1

2)lnln(ln))(,( wMA  

To obtain the estimate of the priority vector we minimize the above criterion 
subject to the conditions: 
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Because of the form of the above solution the LLSM is also called a geometric 
means technique.  
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The second COBM is the least square method (LSM) [6, 19, 21]. The method 
can be presented as the following optimization problem 

 ∑ ∑
= =
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However, this method has its share of criticism and usually is not considered as 
an attractive alternative to REM or LLSM, [6, 19, 21]. 

Goal programming based methods form another group of methods belonging to 
COBM class. An interesting method implementing this approach was presented in 
[25]. This method sometimes is called original goal programming method 
(OGPM) and can be presented in the following form. 
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The solution to the problem is a vector v = (v1,…,vn)’ which should be normali-
zed to give the priority vector w. This method manifest some important features 
and is an interesting alternative to the most popular REM and LLSM, [12, 25]. 
Various modifications of this method and implementations of the goal program-
ming idea in the AHP can be found in [13-15].  

2.3. Other methods 

In the statistical approach the elements of PCM are interpreted as a realizations 
of a random process. Commonly it is assumed that the random judgments have the 
form (2) and various prioritization methods obtained in this framework result from 
various assumptions about the distributions of the random perturbation factor, [7-
-9]. Usually the resulting estimators  have not got a closed form solutions.   

As a statistical method can also be obtained some of the above described 
COBM. For example LLSM can be derived as a maximum likelihood estimator 
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when the random variables Zij = ln(eij) are independent and normally distributed, 
see e.g. [16, 18] 

Another approach for deriving priorities is based on fuzzy sets theory. In this 
approach the decision-maker express his/her opinions using fuzzy preference rela-
tion. A goal programming approach in this framework was considered in [26].  

2.4. Measurement of consistency 

There are several proposals in the literature for consistency measures. Among 
them are the Koczkodaj’s inconsistency index [27], a residual mean square con-
nected with LLSM [11, 16], and others, see e.g. [19, 25]. The natural measures of 
inconsistency in the case of optimization methods are simply the criterion func-
tions d - however due to the variability of the optimization models and difficulties 
with intuitive interpretation of the criteria in that context they have not attracted 
much attention of the AHP community. One may observe that a popularity of 
a given consistency measure is closely related to the popularity of the prioritization 
method it is connected with. Thus the most popular measure is again connected 
with the REM and proposed by Saaty [5]. According to this concept the incon-
sistency of the data is measured as follows. First a consistency index CI(n) is com-
puted as an average of all eigenvalues except the principal one. Thus, by applying 
well-known algebraic relations, the index CI(n) can be given in the following form 
[5, 19]: 
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)(CI max
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Next, the value of the index is compared with an average consistency index 
ACI(n) obtained from a sample of 500 of randomly generated reciprocal matrices 
of order n. The estimated values of ACI can be found in the AHP literature, see e.g. 
[5, 19]. Finally, Saaty proposed the so called consistency ratio CR = CI(n)/ ACI(n) 
for testing whether the information contained in the PCM is consistent enough to 
be is acceptable. Unfortunately, this index is constructed only for RPCM and even 
then it can be very misleading, see e.g. [23, 24].  

3. Goal programming based priority vectors and consistency index 

In this section we propose a new goal programming based prioritization method 
(GPPM) and connected with it a consistency index (GPCI) which can be used for 
generating the priority vectors from both reciprocal and nonreciprocal PCMs. The 
goal programming prioritization methods look for a vector of weights which gives 
a comparison matrix which minimizes the distance to the given PCM with respect 
to a given criterion function measuring the distance. In all known from the litera-
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ture models the criterion functions compare directly the elements of the matrices 
and minimize an average of some measure of a distance between correspond-
ing elements of the matrices A and M(w) . For example in the LLSM appropriate 
elements of the matrices are considered to be close to each other if a natural loga-
rithm of their ratio is close to zero, or, equivalently, the ratio itself is close to one. 
The latter criterion is also employed in the OGPM while  in the LSM we minimize 
the average of the squared  Euclidian distances between corresponding elements of 
the matrices.   

On the other hand REM look for a prioritization vector satisfying some kind of 
a generalization of the relation (2) holding in the perfect judgment case. We may 
say, that in this method the relation (2) is a base for the optimality criterion and 
thus we look for a vector “as close as possible” to the perfect one in a sense justi-
fied by the spectral theory. Here we propose to combine the concept that the opti-
mal vector should approximately satisfy the relation (2) with the optimization ap-
proach. The idea is that if the human judgment are no perfect we should find  
a priority vector which satisfies the relation (2) as perfectly as possible. To achieve 
this aim we propose to estimate the priority vector by solving the following goal 
programming problem 
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As a result we obtain the vector of priority weights as well as a new consistency 
index GPCI. In a consistent case GPCI always equals 0. For inconsistent PCMs  
the index takes a positive values. One can observe that in the perfect case the sum 
of the coefficients of the vectors hL = Aw and hR = nw (which are on left and right  

side of the equation (2) equals n. In inconsistent case the sum ∑
=

−+ +
n

i
ii dd

1
)( is  

simply the sum of absolute deviations between the coefficients of the two vectors: 

∑
=

−
n

i
i

1

)( LR hh . The index GPCI is equal to this sum divided by n. So, its value 

may be compared with 1, the sum of all priority weights, and, roughly speaking, it 
tells us what part of the mass of weights on the whole has to be changed (added or 
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subtracted dependently on the coefficient) to achieve the equality. One can also 
easily verify, that in the case where the judgments of the decision-maker are  
consistent enough to indicate which of the alternatives is the best one, then the 
value of GPCI is not greater than 2–2/n (usually it is much smaller). Unlike  
the REM the proposed prioritization method and index can be applied to any type 
of PCM and thus provide us with a tool for dealing with nonreciprocal PCMs. 
In next section we  compare the two approaches with the help of computer simula-
tions.  

4. Simulation studies results 

In the simulations we generate the following types of  random inconsistent 
PCMs:   
– reciprocal (RPCM), 
– reciprocal and transitive (RTPCM), 
– transitive, nonreciprocal (TPCM). 

To compare the methods REM and GPPM we generate 1000 matrices of  each 
type. For each matrix we compute the priority vectors, vRE and vGP and consistency 
indices CR and GPCI, with the help of the REM and GPPM, respectively. Next  we 
calculate: 
– Pearson correlation coefficient between the priority vectors rV, 
– the rank correlation coefficient between the priority ranks ρV, 
– the consistency indices CR and GPCI, 
– the value of the goal programming criterion GPC for the Saaty’s priority vector 

vRE. 
The latter is computed according the formula: 

 ∑
=

⋅−⋅=
n

i
in

n 1
)(

1
)(GPC vvAv  

Saaty in [5] propose an integers 1,…,9 and their inverses for evaluations of the 
preference ratios i.e. for the elements of PCMs. However this constraint is not 
a necessary requirement in AHP and many other authors propose much bigger  
variety of possible evaluation numbers, especially in the statistical approach, [7, 
16, 17, 21]. Similarly as in [16], in our simulations the ratios are drown from the 
set of integers not greater than 50 and their inverses. The considered number of 
decision alternatives n is 5, 7 and 9.  

Table 1 shows the mean correlation coefficients between priority vectors  
and between priority ranks generated with the help of  two methods and based on 
the whole data set related to a given type of PCM. The table presents also  
the overall Pearson correlation coefficient between the consistency indices denoted 
by rI. 
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Table 1  

The results of comparative studies for REM and GPPM: the mean values  
of the correlation coefficients for different types of PCMs 

 RPCM RTPCM TPCM 

rV ρV rI rV ρV rI rV ρV rI 

n = 5 0.999 0.990 0.642 0.998 1.00 0.568 0.990 0.970 0.707 

n = 7 0.997 0.983 0.612 0.996 0.997 0.65 0.990 0.964 0.708 

n = 9 0.995 0.975 0.590 0.996 0.995 0.704 0.988 0.963 0.650 

 
Amazingly high correlation coefficients rV and ρV confirm close relation be-

tween the two methods. The least values of the coefficients are obtained for the 
nonreciprocal PCMs and that results  from the fact that the REM is designed for 
the reciprocal ones while the GPPM has much more general applications and can 
be adopted in all cases. The coefficient rI has got smaller, yet still quite high  
values. It results from the fact, that GPPM often can find better explanation of the 
decision maker judgments and better justification for inconsistencies contained in 
the PCM. In other words the method can find vectors which better approximate the 
relation (2) than the REM. The study of the Table 2 enables deeper  insight into the 
problem. It shows the mean values of the GPC for vectors obtained via both me-
thods. The symbol RD stands for relative difference for the two values, i.e.  

 RD = [GPC(vRE)-GPC(vGP)]/GPC(vGP) 

Table 2 

The results of comparative studies for REM and GPPM: the mean values  
of the GPC for different types of PCMs 

 RPCM RTPCM TPCM 

GPCRE GPCGP RD GPCRE GPCGP RD GPCRE GPCGP RD 

n = 5 0.442 0.012 40.4 0.441 0.006 64.7 1.37 0.103 24.0 

n = 7 0.681 0.022 34.6 0.503 0.007 67.1 1.16 0.059 38.6 

n = 9 0.840 0.031 28.9 0.522 0.007 67.1 0.968 0.035 53.4 

 
We see that GPPM provides us with priority vectors which much better approxi-
mate the relation (2).  

There is also another interesting thing connected with new approach. The corre-
lation coefficient between the Saaty’s consistency index CR and the values of the 
goal programming criterion for the Saaty’s priority vectors is equal to 1 in almost 
all considered data sets (containing 1000 records!). Only in the case of nonrecipro-
cal PCMs the coefficient was between 0.995 and 0.9995 for n = 5,7,9.  
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Final remarks 

The simulation studies show that the GPPM is an interesting alternative for the 
usual REM. It can be adopted for every type of PCM providing us with an con-
sistency measure which enables us to compare all types of PCM with respect to 
this feature. The calculations necessary to generate the priority vector and the val-
ue of consistency index are rather easy - they can be performed with any standard 
calculation software such as commonly used  spreadsheets. As a goal programming 
method it demonstrates also another good features. It provides the decision maker 
with a tool to comparison of various priority vectors generated by different me 
thods, i.e. the criterion function GPC(). Moreover it allows the decision maker to 
implement various other conditions which, according to decision-maker opinions, 
should be satisfied by the weights. For example this feature of the method can help 
us to prevent the rank reversal phenomena. We leave this investigation to future 
studies.  
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