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Abstract. The generation of priority vectors from pairwisergparison matrices is an essen-
tial part of the Analytic Hierarchy Process. Apfram the well-known Saaty’s right eigen-
value method various other procedures have beepmoped for priority modelling. Two
most important alternative approaches are thesstati estimation techniques and methods
based on constrained optimization models. In thEepa new goal programming model for
deriving priority vectors and for measurement ofigistency is proposed. In this approach
the idea of goal programming is combined with tHeai of Saaty’s eigenvalue method.
Some features of the method are studied via compuneilations.

Introduction

Analytic Hierarchy Process (AHP), since its inventi has been a tool at the
hands of decision makers and researchers. Nowoneésof the most widely used
multiple criteria decision-making tools [1-3]. Inat method, pairwise comparisons
are performed by the decision-maker (DM) and thengdairwise comparison ma-
trix (PCM) is a base for deriving the weights measgythe relative importance of
the alternatives in the problem. The weights fowrcalled priority vector. By
deriving priority vectors for all matrices in thesharchy created for given decision
problem, it is possible to perform standard AHPraggtion and obtain the final
vector of the overall priorities. Thus generatingopty vectors from pairwise
comparison matrix is the core of the AHP. In depélg the AHP Saaty [4, 5] sug-
gested the right eigenvalue prioritization meth&®EM). In this approach, the
priority vector is obtained as the normalized pipat right eigenvector of the
PCM corresponding to the largest eigenvalue whickimple and its existence is
guaranteed by Perron’s Theorem [6]. Although th&VREmains perhaps the most
popular prioritization technique, during last thrdecades a number of other
methods have been proposed in the literature. Antloem are the methods based
on the statistical approach to the prioritizationlgpem [7-9], and methods based
on constrained optimization models [10-15]. Howeeach known method has its
advantages and disadvantages and thus some lite@yue that one method is
better than another while other authors hold arospg position. One can find in
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the literature number of papers devoted to comparatudies of various prioriti-
zation methods, [16-21]. Several authors suggsst @mbining different prioriti-
zation techniques to obtain better estimates ofutigerlying true priority vector,
see e.g. [12, 22].

In the following section we state the prioritizatiproblem formally. Section 2
briefly reviews the main prioritization approachBiext we introduce a new meth-
od which combine the goal programming idea withittesa of the REM. This ap-
proach provide us not only with a new and relagiv@mple prioritization tech-
nique but also with intuitive measure of consisjent the decision-maker judg-
ments. The last section presents the results o§ithalation study in which our
method is compared with the REM.

1. The problem - definitions and notation

A basic assumptions of the AHP is the existenca ofiique (up to multiplying
constant factor) natural vector of priorities= (wy,...,w,)’ of n alternatives with
respect to a given criterion. Commonly the priovitgightsw;, i = 1,...n, are cho-

sen to be nonnegative and normalized to unE/i"wi =1 It is also assumed that

priority ratiosa; = wi/w; can be translated into verbal expressions andpénaple
are able to estimate these priority ratios with hielp of translations rules. Tables
with such rules proposed by Saaty are availablbénAHP literature, see e.g. [5,
23]. Based on the assumptions, in the conventigh#? a decision-maker esti-
mates ratios of priorities, which form the pairwisEmparison matriXd = [a;]nxn.
Typically, the input data of PCM is collected ority the upper triangle of the
matrix A, while the remaining elements are computed asnterse of the corre-
sponding symmetric elements in the upper triangieaj = 1/a;. Such a PCM is
said to bereciprocal (RPCM). This method of data collection (leadingRIBCM)
forces some consistency of judgments which is hetys natural, [7, 19, 21].
Some authors argue, see e.g. [7, 21], that enfptbi@ kind of consistency on the
input data creates unnecessary dependency amoegvatisns and loses addi-
tional information contained perhaps in the elemeanftthe lower triangle of
what and may lead to worse estimates of the piggrit

PCM is said to bé&ransitive if the following condition holds: if an elemeat is
not less than an elemest thena; > a fori = 1,...n.

PCM is said to beonsistent (CPCM) if it is reciprocal and its elements satisf
the conditiona;ay = a for alli, j, k= 1,...n. A necessary and sufficient condition
for a positive matribA to be consistent &= wi/w; i,j =1,...Nn.

However, it is obvious that in reality it cannot é&epected that the elements of
PCM give exactly priority ratios. The human mindnist a perfect measurement
device. Questions such as “compare - in a ratitescthe importance of various
features of your house”, or “tell me, how many tartee student A is better in
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mathematics than the student B” do not have a ggeaswer. The answers (eva-
luations of the ratios) may depend on personad (@&tperience, specific knowled-
ge, the judge temporary mood and temper and mayimaime. We also cannot
neglect rounding errors which can be quite big & wge integers and their inver-
ses. Therefore typically, even if the comparisoresdone very carefully, PCM is
inconsistent and we have to express the relatiowdssn the PCM elements and
the priority weights in the form

aj =ej —- 1)

whereeg; is a perturbation factor which is expected to barrl. In the statistical
approach the factor is interpreted as a realizaifanrandom variable.

The fundamental problem of the AHP is how to deteerihe “true” priority
vector given the PCM. Another problem connectedhwhe theory is how to mea-
sure the degree of inconsistence of the PCM, bectiegssignificant violations of
the consistency, may cause the usefulness of taeqdastionable.

2. Prioritization methods

We cannot expect to extract the true priority weidbased on the given PCM,
because of the perturbations in judgments, whichbmconsidered as an uncon-
trollable and/or random process. Therefore we havge content with good esti-
mates. Several approaches for deriving the présritvill be listed and briefly de-
scribed in this section.

2.1. Right eigenvalue method

The REM was fully developed, described and appirethe AHP context by
Saaty [4, 5]. Now it is the first and most commoused prioritization method.
In a perfect judgment case where are no pertunts@ = 1) we have

Aw =nw (2

Thus in this case the priority vectar can be calculated by solving the eigen-
vector equation (2). It turns out that for a cotegis matrixA the numben is the
principal eigenvalue oA, i.e. the largest solution of the characteristicaion:
det(A — Al) = 0. It is also the only nonzero eigenvalue iis ttase. Saaty proposi-
tion when the matriA is perturbed is to use the normalized right eigetoreas-
sociated with the largest eigenvalue as an estiofatee true priority vector. Thus
to obtain the estimate we need to solve generahgg&gtor equation

AW = AoV (3)
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where A is the principal eigenvalue. For an arbitrary pesireciprocal matrix
A the valued, . is always real, uniqgue and not smaller than

Although the method has attracted much attenti@absih has been criticized in
the literature. First of all it was design only feciprocal matrices, and as we have
mentioned earlier, the method of gathering inforaraieading to RPCM is not
natural and usually cause the loss of informat8econdly, for inconsistent matri-
ces of order greater than 3 the solution is nadrilant under transposition, see e.g.
[16, 18]. This may cause difficulties in the intexfation of the weights values.
Another criticism is connected with the fact thatike most estimation procedures
REM does optimize any criterion function and thsedifficult to interpret or to
compare with other estimates, [11, 16]. Anotherrshaf criticism is connected
with so called rank reversal phenomena, [23, 24jvds also noticed that the
Saaty’s method is prone to influence of outlierghe data, [9, 25]. Finally, the
REM requires complex calculations involving anatiére procedure, see e.g. [19].

2.2. Constrained optimization based methods (COBM)

COBM are generally the methods which look for ateeof weightsw which
produces a pairwise comparison matviXw), satisfies some conditions (such as
positivity of coefficients, normalization etc.) amdinimizes the distance to the
given PCM, sayA, with respect to a given criterion function measgrthe dis-
tance. The most popular one is called thgarithmic least squares method
(LLSM), [10-12, 19, 21]. In this method the critmi function measuring the dis-
tance betweeA andM (w) is given by

n n
d(AMW)) =3 ¥ (Ina; ~Inw; +Inw;)?
i=1j=1
To obtain the estimate of the priority vector wenimize the above criterion
subject to the conditions:

|2|Wi =1 w, >0, i=1..,n
i=1

n
Imposing the normalization conditioh), w; =1, the solution to this optimiza-
i=1
tion problem has the following closed form:

0 1/n 0l n 1/n
L
j=1 i=1\ j=1

Because of the form of the above solution the LLiSMIso called a geometric
means technique.
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The second COBM is theast square method (LSM) [6, 19, 21]. The method
can be presented as the following optimization |enob

mind(A,MW) =3 3. (@; =W /w;)?
i=1j=1

subject to

gjwi =1 w >0 i=1..,n
i=1

However, this method has its share of criticism aswlally is not considered as
an attractive alternative to REM or LLSM, [6, 19]2

Goal programming based methods form another grémpethods belonging to
COBM class. An interesting method implementing tgigproach was presented in
[25]. This method sometimes is callamtiginal goal programming method
(OGPM) and can be presented in the following form.

minol(A,M(v))=§i(lnd,-+ +Ing;)

i=1>i
subject to

Ing; —Ing; +Inv; —Inv; =Ing;
Ing; Ond; =0

foralllsi<j<n

The solution to the problem is a vectos (vs,...,vy) which should be normali-
zed to give the priority vecton. This method manifest some important features
and is an interesting alternative to the most pmp&®EM and LLSM, [12, 25].
Various modifications of this method and impleméotas of the goal program-
ming idea in the AHP can be found in [13-15].

2.3. Other methods

In the statistical approach the elements of PCMraegpreted as a realizations
of a random process. Commonly it is assumed tlatahdom judgments have the
form (2) and various prioritization methods obtaire this framework result from
various assumptions about the distributions ofrtmelom perturbation factor, [7-
-9]. Usually the resulting estimators have notayotosed form solutions.

As a statistical method can also be obtained sofntheo above described
COBM. For example LLSM can be derived as a maxiniikelihood estimator
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when the random variablé = In(g;) are independent and normally distributed,
see e.g. [16, 18]

Another approach for deriving priorities is basedfozzy sets theory. In this
approach the decision-maker express his/her ornising fuzzy preference rela-
tion. A goal programming approach in this framewads considered in [26].

2.4. Measurement of consistency

There are several proposals in the literature forsistency measures. Among
them are the Koczkodaj's inconsistency index [27}esidual mean square con-
nected with LLSM [11, 16], and others, see e.g, PB&. The natural measures of
inconsistency in the case of optimization methods ssamply the criterion func-
tionsd - however due to the variability of the optimizatiomodels and difficulties
with intuitive interpretation of the criteria inah context they have not attracted
much attention of the AHP community. One may obseatwat a popularity of
a given consistency measure is closely relatede@opularity of the prioritization
method it is connected with. Thus the most popaileasure is again connected
with the REM and proposed by Saaty [5]. Accordingthis concept the incon-
sistency of the data is measured as follows. Bigtnsistency index Gl is com-
puted as an average of all eigenvalues exceptrtheigal one. Thus, by applying
well-known algebraic relations, the index gl€an be given in the following form
[5, 19]:

Cl(n) = Amax =1
n-1

Next, the value of the index is compared with arrage consistency index
ACI(n) obtained from a sample of 500 of randomly gemetakeciprocal matrices
of ordern. The estimated values of ACI can be found in thiPAiterature, see e.g.
[5, 19]. Finally, Saaty proposed the so called esiancy ratio CR = CH)/ ACI(n)
for testing whether the information contained i@ f«CM is consistent enough to
be is acceptable. Unfortunately, this index is tmased only for RPCM and even
then it can be very misleading, see e.qg. [23, 24].

3. Goal programming based priority vectors and constency index

In this section we propose a new goal programmaggf prioritization method
(GPPM) and connected with it a consistency indeRQG which can be used for
generating the priority vectors from both recipiomad nonreciprocal PCMs. The
goal programming prioritization methods look fovector of weights which gives
a comparison matrix which minimizes the distancéh®given PCM with respect
to a given criterion function measuring the dis&ra all known from the litera-
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ture models the criterion functions compare disetie elements of the matrices
and minimize an average of some measure of a disthetween correspond-
ing elements of the matricés andM(w). For example in the LLSM appropriate
elements of the matrices are considered to be ¢tosach other if a natural loga-
rithm of their ratio is close to zero, or, equivdlg, the ratio itself is close to one.
The latter criterion is also employed in the OGPHKilev in the LSM we minimize
the average of the squared Euclidian distancesdeet corresponding elements of
the matrices.

On the other hand REM look for a prioritization tecsatisfying some kind of
a generalization of the relation (2) holding in fherfect judgment case. We may
say, that in this method the relation (2) is a biasehe optimality criterion and
thus we look for a vector “as close as possiblethw perfect one in a sense justi-
fied by the spectral theory. Here we propose tolinenthe concept that the opti-
mal vector should approximately satisfy the relat{@d) with the optimization ap-
proach. The idea is that if the human judgment reveperfect we should find
a priority vector which satisfies the relation &%) perfectly as possible. To achieve
this aim we propose to estimate the priority vedigrsolving the following goal
programming problem

n
MinGPCI=2 3" (d +d")
n|:]_

subject to
. B n
di —di + X aw; =nw
j=1

n
ijzl VV|20, di+207 di_ZO
=1

i=1...,n

As a result we obtain the vector of priority weigls well as a new consistency
index GPCI. In a consistent case GRays equals 0. For inconsistent PCMs
the index takes a positive values. One can obdbaten the perfect case the sum
of the coefficients of the vectols = Aw andhg = nw (which are on left and right

n

side of the equation (2) equats In inconsistent case the sufi(d;" +d;)is
i=1

simply the sum of absolute deviations between tedficients of the two vectors:

Y |(hg =h);|. The index GPCI is equal to this sum dividedrbySo, its value
i=1

may be compared with 1, the sum of all priority g¥es, and, roughly speaking, it
tells us what part of the mass of weights on thelevhas to be changed (added or
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subtracted dependently on the coefficient) to achigne equality. One can also
easily verify, that in the case where the judgmenftgshe decision-maker are
consistent enough to indicate which of the alteveatis the best one, then the
value of GPCI is not greater than 2rJusually it is much smaller). Unlike

the REM the proposed prioritization method and indan be applied to any type
of PCM and thus provide us with a tool for dealimgh nonreciprocal PCMs.

In next section we compare the two approachestivéthelp of computer simula-
tions.

4. Simulation studies results

In the simulations we generate the following typds random inconsistent

PCMs:

— reciprocal (RPCM),

— reciprocal and transitive (RTPCM),
— transitive, nonreciprocal (TPCM).

To compare the methods REM and GPPM we generate hafrices of each
type. For each matrix we compute the priority vegtase andvgp and consistency
indices CR and GPCI, with the help of the REM aRP®1, respectively. Nexive
calculate:

— Pearson correlation coefficient between the psoréctorsry,

— the rank correlation coefficient between the ptioranksg,

— the consistency indices CR and GPClI,

— the value of the goal programming criterion GPCtfar Saaty’s priority vector

VRE.

The latter is computed according the formula:

GPQV) =%%|(A v -n0v))|

Saaty in [5] propose an integers 1,...,9 and theeriges for evaluations of the
preference ratios i.e. for the elements of PCMsweler this constraint is not
a necessary requirement in AHP and many other euthmpose much bigger
variety of possible evaluation numbers, especialyhe statistical approach, [7,
16, 17, 21]. Similarly as in [16], in our simulat® the ratios are drown from the
set of integers not greater than 50 and their se®rThe considered number of
decision alternativesis 5, 7 and 9.

Table 1 shows the mean correlation coefficientsvbeen priority vectors
and between priority ranks generated with the loélgwo methods and based on
the whole data set related to a given type of PO table presents also
the overall Pearson correlation coefficient betwienconsistency indices denoted
byr,.
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Table 1
The results of comparative studies for REM and GPPMthe mean values
of the correlation coefficients for different typesof PCMs
RPCM RTPCM TPCM
fv yoy; f v yoy; f v oy, f

0.999 0.990 0.642 0.998 1.00 0.568 0.990 0.97®.707
0.997 0.983 0.612 0.996  0.997 0.65 0.990 0.964€.708
0.995 0.975 0.590 0996 0995 0.704 0.988 3.96 0.650

S |3S|(>
1
©O(N|O

Amazingly high correlation coefficients, and p, confirm close relation be-
tween the two methods. The least values of theficamefts are obtained for the
nonreciprocal PCMs and that results from the that the REM is designed for
the reciprocal ones while the GPPM has much monergéd applications and can
be adopted in all cases. The coefficienhas got smaller, yet still quite high
values. It results from the fact, that GPPM oftan &ind better explanation of the
decision maker judgments and better justificationificonsistencies contained in
the PCM. In other words the method can find vectdnch better approximate the
relation (2) than the REM. The study of the Tabkn2ables deeper insight into the
problem. It shows the mean values of the GPC fatore obtained via both me-
thods. The symbol RD stands for relative differefazethe two values, i.e.

RD = [GPC{re)-GPC{cr)l/GPClcp)

Table 2

The results of comparative studies for REM and GPPMthe mean values
of the GPC for different types of PCMs

RPCM RTPCM TPCM

GPGe | GPGp | RD | GPGwe | GPGp | RD | GPGe | GPGyp | RD
0.442 0.012 | 404  0.441 0.006 647  1.3F 0.103 4.0 2
0.681 0.022 | 348 0.503 0.007 671  1.1p 0.059 8.6 3
0.840 0.031| 289 0522 0.007 671  0.968

S| |>
1
O ||

0.08%3.4

We see that GPPM provides us with priority vectwhich much better approxi-
mate the relation (2).

There is also another interesting thing connecti¢ld mew approach. The corre-
lation coefficient between the Saaty’s consisteincex CR and the values of the
goal programming criterion for the Saaty’s prionitgctors is equal to 1 in almost
all considered data sets (containing 1000 recar@sily in the case of nonrecipro-
cal PCMs the coefficient was between 0.995 and9%h96rn = 5,7,9.
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Final remarks

The simulation studies show that the GPPM is agrasting alternative for the
usual REM. It can be adopted for every type of P@Mviding us with an con-
sistency measure which enables us to compare dstpf PCM with respect to
this feature. The calculations necessary to geméhat priority vector and the val-
ue of consistency index are rather easy - theybeaperformed with any standard
calculation software such as commonly used sphesds. As a goal programming
method it demonstrates also another good featlirpeovides the decision maker
with a tool to comparison of various priority vexdagenerated by different me
thods, i.e. the criterion function GPC(). Moreovteallows the decision maker to
implement various other conditions which, accordinglecision-maker opinions,
should be satisfied by the weights. For example fémture of the method can help
us to prevent the rank reversal phenomena. We lgasanvestigation to future
studies.

References

[1] Ho W., Integrated analytic hierarchy process as@jiplications - A literature review, European
Journal of Operational Research 2008, 186, 211-228.

[2] Vaidya O.S., Kumar S., Analytic hierarchy proceés: overview of applications, European
Journal of Operational Research 2006, 169, 1-29.

[3] Zahedi F., The analytic hierarchy process - a suoféhe method and its applications, Interfac-
es 1986, 16, 96-108.

[4] Saaty T.L., The Analytic Hierarchy Process, McGid, New York 1980.

[5] Saaty T.L., Vargas L.G., Comparison of eigenvalogatithmic least square and least square
methods in estimating ratio, Journal of Matheméafitadelling 1984, 5, 309-324.

[6] Gantmacher F.R., Applications of the theory of ncasi Interscience Publishers Inc., London
1959.

[7] Basak I., Comparison of statistical procedures inygéinahierarchy process using a ranking test,
Mathematical Computation Modelling 1998, 28, 105-118

[8] Lipovetsky S., Tishler A., Interval estimation ofigrities in the AHP, European Journal of
Operational Research 1997, 114, 153-164.

[9] Lipovetsky S., Conklin M.M., Robust estimation ofgaities in the AHP, European Journal of
Operational Research 2002, 137, 110-122.

[10] Cook W.D., Kress M., Deriving weights from pairwisemparison ratio matrices: An axiomatic
approach, European Journal of Operational Rese&&8, B7, 355-362.

[11] Crawford G., Williams C.A., A note on the analysissabjective judgment matrices, Journal of
Mathematical Psychology 1985, 29, 387-405.

[12] Hashimoto A., A note on deriving weights from pase/comparison ratio matrices, European
Journal of Operational Research 1994, 73, 144-149.

[13] Lin C-C., An enhanced goal programming method foregating priority vectors, Journal of the
Operational Research Society 2006, 57, 1491-1496.

[14] Lam K.F., Choo E.U., Goal programming in preferedeeomposition, Journal of the Opera-
tional Research Society 1995, 46, 205-213.



Goal programming approach for deriving priority tgs ... 27

[15] Moy J.W., Lam K. F., Choo E.U., Deriving the parti@lues in MCDM by goal programming,
Annals of Operations Research 1997, 74, 277-288.

[16] Budescu D.V., Zwick R., Rapoport A., Comparison of émalytic hierarchy process and the
geometric mean procedure for ratio scaling, AppkFeychological Measurement 1986, 10, 69-
-78.

[17] Dong Y., Xu Y., Li H., Dai M., A comparative stuaf the numerical scales and the prioritiza-
tion methods in AHP, European Journal of Operati®esearch 2008, 186, 229-242.

[18] Fichtner J., On deriving priority vectors from nieds of pairwise comparisons, Socio-Econ.
Plann. Sci. 20, 1986, 341-345.

[19] Saaty T.L., Scaling method for priorities in hiefsical structures, Journal of Mathematical
Psychology 1977, 15, 3, 234-281.

[20] Saaty T.L., Hu G., Ranking by Eigenvector versunthethods in the analytic hierarchy pro-
cess, Applied Mathematics Letters 1998, 11, 4, 129.-1

[21] zahedi F., A simulation study of estimation methaughe analytic hierarchy process, Socio-
Economic Planning Science 1986, 20, 347-354.

[22] Srdjevic B., Combining different prioritization meti® in the analytic hierarchy process syn-
thesis, Computers & Operations Research 2005, 37-1899.

[23] Bana e Costa, C.A., Vansnick J.-C., A critical analg§ithe eigenvalue method used to derive
priorities in AHP, European Journal of OperatioRakearch 2008, 187, 1422-1428.

[24] Farkas A., The analysis of the principal eigenveaib pairwise comparison matrices, Acta
Polytechnica Hungarica, 4(2), http://uni-obuda.buvpal/Farkas_10.pdf

[25] Bryson N., A goal programming method for generaimigrity vectors, Journal of the Opera-
tional Research Society 1995, 46, 641-648.

[26] Xu Z.S., Goal programming models for obtaining phierity vector of incomplete fuzzy prefer-
ence relation, International Journal of Approximaeasoning 2004, 36, 261-270.

[27] Bozoki S., Rapcsak T., On Saaty’s and Koczkodaj'orisistencies of pairwise comparison
matrices, J. Glob. Optim. 2008, 42, 157-175.



