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Abstract. The active role played by chemotactic current dgrgithe migrating cells in order to
overcome its diffusion current, leads to a spatiathon-homogeneous and time - persistent distribu-
tion of the cells. We show that independently & ithitial attractant concentration, its quantitpds
exponentially to the concentration of cells asdygtem approaches a steady state.

Introduction

There is evidence that the sensing of chemicalemnation gradients is essen-
tial to many single cell living organisms, inseatsd even cells in growing multi-
cellular animals. Conveyance of information betwes@ambers of a species is
often based on their ability to release and selmsgtesence of special chemicals
called pheromones. The presence of pheromonesadrtd a direct movement of
cells in the direction of, or against a concentratjradient of the pheromone. This
may result in a process in which the cells movenfregions where their concen-
tration is lower to regions where it is higher. Bucprocess, which is contrary to
common diffusion due to thermal motion, is referesdachemotaxis. Chemotaxis
is also crucial in biological processes of higheinals. For example, a bacterial
infection generates chemicals in its vicinity, tbigh leukocyte cells in the blood
are attracted in the direction of the concentragiadient of the chemical.

Chemotactic processes are successfully modeledematically using coupled
nonlinear differential equations [1]. Recent modétdended to be biologically
realistic, have numerous parameters and are solicatea that it is difficult to
assume their value. Most of results obtained fraohsnodels are numerical [2-4].
In this work we analyze the simple chemotactic nhadeKeller and Segel [5],
which contains a few essential and measurable pdeasnand gives insight into
the phenomena which govern cell aggregation. InKibker-Segel model there is
no cell generation, i.e. the number of cells issidered to be constant. The con-
centrations of cells and of the attractant are attarized by their densities, and
both the cells and the attractant can flow alosgngle line. The rate of change of
the attractant and of the cell concentrations ardimear functions of the concen-
trations of the cells and of the attractant. Thacpss that occur will be described
by equations which depend on the coordinatand the time.
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The aim of what follows is to show that among tb&igons of the equations
mentioned always exists the steady state solution.

Basic equations

We consider the density of the celi§f,t) and of the attractant(F,t) as func-
tions of an arbitrary point in space and time, abtarized by the position vector
I and timet. The attractant is a chemical, which is producgthle cell at a given
rate.

The cell and attractant flows are described byemirdensity vectorsj(F,t)
and J,(F.t), respectively, which give the direction of thewl@and the quantity
that passes per unit time through a unit area peipelar to the flow direction.
The cell current densityd(F,t) is composed of two parts: the diffusion current
density jv(F,t), due to the concentration gradieiv , and the chemotactic cur-

rent density,J.(F,t), due to the gradierila of the attractant. Hence
J(F.t)=3,(F.)+ Je(F 1) (1)

The attractant current densitl, (F,t) is purely due to diffusion. The diffusion
current densities are assumed to have the form

J,(F,t)=-D,0v(F,1) 2)
and
Jo(F.t)=-D,0a(r t) (3)

with Dy the cell diffusion coefficient an®, the attractant diffusion coefficient,
which are taken as positive and independent ofsgfae and time coordinates.
These are the usual diffusion equations, whichesgthe fact that in a very good
approximation a density gradient produces a flovictvlis linearly proportional to
that gradient.

The chemotactic current density is assumed to\Engdiy

Jo(r 1) =v(r.t)oxla(F.)p Da(r 1) @

where )([a(F,t)] is the chemotactic coefficient, which is also ta®sitive. Since
the cells are producing the attractant, the attracturrent is proportional to the
cell densityv(F,t).

Notice the difference in sign between the diffustamrents and the chemotac-
tic current: whereas diffusion always carriers matefrom regions of higher to
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those of lower concentrations, the chemotactic exuridoes the opposite. The
chemotactic flux is generated by the self - prapglimotion of the energy con-
suming biological activity of living organisms, aentrasted with the passive dif-
fusion currents of the cells and the chemicals. therchemical - in this case at-
tractant - diffusion is a process which is alwapserved and is due to the random,
thermally excited, motion of the molecules, couplgth their mutual repulsion at
small distances.

The rate of change o)?(F,t) is due to a generation of new cells, plus an out-

flux of j(F,t), hence the cell density and cell current densigyralated by so-
called continuity equation

p =g, |a(F t)v(Ft} Ot (5)

wheregy is a cell generation rate function, which depeimdgeneral on both the
cell and the attractant concentrations. From noywenomit the arguments and
t, to simplify the notation. Using Equations (1) g2yl the continuity equation for
v(F,t) becomes

aa_lt/:gv(a,v)— D[ﬁDvDV—V D((O'D]Da’] (6)

The continuity equation for the attractant is givesing (3), by

% galavy DH{Dy0a) @

whereg, is a cell generation rate (also called “sourcef)dtion for the chemical
attractant.

The normal passive diffusion processes in Equat{6hand (7) have homoge-
nizing effect on the densities, whereas the chectiotprocess, given in (6) by the
term with the negative sign, tends to make the adefisity spatially inhomogene-
ous. It is mainly this inhomogeneous steady stadé @re important for biological
processes.

In the following we derive a general time - depertdaroperty of the system
which will be summarized by Equations (12) and (Id)e boundary condition,
that the boundary surfacg enclosing the volum¥ is impenetrable to the attrac-
tant, is expressed by

A, (S)=0 8

Using Equation (3) this yields the Neumann boundarydition
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(A0Da)s=0 9)

where f is a unit vector perpendicular t& and pointing towards the exterior at
the point under consideration.

We assume thaB is impenetrable not only to the attractant, bgbato the
cells: hence

ACI(S)=A-D,0v +vx(a)da)s =0 (10)
Using Equation (9) we arrive at the Neumann boundandition for the cells:

Integrating (6) and (7) over the volureusing the divergence theorem and apply-
ing the boundary conditions (9) and (11), leads to

oM _ oA _
= —\_[dVg,, (a.v), i _\J;dVga(a,v) (12)

whereM andA are the total masses of cells and attractawtdefined by

M = IdVv(F), A= IdVa(F) (13)

The steady state of the system is definedbyot =0 and da/dt = Q. In this
stateM andA are constant in time and we show that in the K&lkegel model they
are proportional to each other.

The Keller-Segel model. This model for chemotaxis consists of neglectimg
cell production source, i.e. setting

g,(a,v)=0 (14)
and modeling the attractant source termin (7) by
golaw)=h w-hy r (15)

with h, and h, positive constant. In this simple model there Ifaar competi-
tion between attractant productids, [ by the cell and spontaneous attractant
decay - h, [&r . The diffusion coefficientsD, and D, are assumed to be con-
stant, as is the chemotactic coefficient of theaatant, x(a) = xo, with ), con-

stant. In this approximation the continuity equasia(6), (7) can be written in
terms of scaled variables and coordinates in thigess form
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10 00(On-n0a) (16)
D odr
and
@: O%a-a+n (17)
or

The new unit less quantities are defined by

fer)= 20V ry), alfr)=20 )

v ha v

D=—V =h 0, &= i[ﬁ' 18
%’T , i, ¢ D, (18)

The operatorl] now represents differentiation with respect to vieetor &.

The scaled Equations (16) and (17) depend on tiggesphysical constard, the
ratio of the diffusion coefficients. The scaledastg state equations obtained from
(16) and (17) settingn/d7r = (@nd da/o7 = Q, contain no physical constants;
thus they are universal in the sense that theitisols are valid for any combina-
tion of biological parameters.

Since in this model the cell generation source tisrzero, the total madd of
cells is conserved. We define the scaled total maseslls and attractant by

G(1)= [avnlE().]. G, (r)= [avelE(r).q] (19)

Integrating Equation (17) over the volume, usingedjence theorem and the
Neumann conditions leads to the equation

9, g, =6, (20)
or

Since the total cell madd, and hences,,, is constant in timeGa(r) is given
by
Gq (T) = [Ga (0) - Gn] @Xd_ T)"’ Gn (21)
From Equation (21) it follows that, independentlytioe initial attractant con-

centration,G, tends exponentially t&,, as the system approaches a steady state.
Using (13) and (18) we obtain for steady staterétetion
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LT 22
hy (22)

whereA andM are the total masses of attractant and cellsentisgly.

Conclusions

When the cells and the attractant are restrictedl ltmited volume, a spatially
inhomogeneous aggregation of the cells and of tinacéant may result. We show
that in the steady state the total mass of thaa#nt is always proportional to the
total mass of the cells, hence constant.
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