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Abstract. The object of analysis is a functionally graded material (FGM). The aim of this 

paper is threefold. Firstly, we outline and recall basic technological motivations and physi-

cal foundations of FGM concept. Secondly, we propose a certain special kind of FGM, 

which on the microstructural level are made of very thin laminae (a functionally graded 

laminate-FGL). Thirdly, a new approach to the formulation of averaged models for the 

analysis of dynamic problems in FGL is proposed. Example of applications of the proposed 

models will be discussed separately. 

1. Functionally graded materials - review of literature 

Functionally graded materials are usually regarded as heterogeneous composite 

elements having effective (macroscopic) properties varying smoothly in space. 

These new materials was proposed by Japanese, cf. [1, 2]. It is known that if two 

dissimilar materials are bonded together, there is a very strong possibility that 

debonding will occur at some extreme loading conditions. Moreover large defor-

mations at the interface may trigger the initation and propagation of cracks in ma-

terial. For the overcoming these adverse effects functionally graded materials are 

employed. Following Ref. [3] we can say that “functionally graded materials are 

ideal candidates for applications involving severe thermal gradients, ranging from 

thermal structures in advanced aircraft and aerospace engines to computer circuit 

boards.” However, an exact description of the geometry of graded composite mi-

crostructures is usually not possible. We can describe only volume fraction distri-

bution. Hence, following Ref. [4] we can state that “evaluation of thermomechani-

cal response and local stresses in graded materials must rely on analysis of micro-

mechanical models with idealized geometries. While such idealizations may have 

much in common with those that have been developed for analysis of macroscopi-

cally homogeneous composites, there are significant differences between the ana-

lytical models for the two classes of materials.” The response of FGM can be 

obtained by applying certain averaged thermoelastic moduli evaluated for an ar- 

bitrary but fixed representative volume element. It is important that such repre-

sentative element is not easily defined for structures with variable phase volume  

fraction. However a variety of methods, proposed to analyse macroscopically  
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homogeneous composites, are applied to analysis the overall behaviour of FGM. 

The aforementioned modelling methods formulated in the recent literature make it 

possible to determine the effective properties at a given point within FGM. Certain 

basic methods used to estimate properties of FGM are discussed in [5] where the 

wide list of references is included. A detailed review and description of the full 

generalization of a new Cartesian-coordinate-based higher order theory for FGM is 

presented in [3]. This theory is based on volumetric averaging of the various field 

quantities, together with imposition of boundary and interfacial conditions in an 

average sense. In Ref. [4] have been performed detailed finite element studies  

of discrete models and compared the obtain results with these computed from  

homogenized models in which effective properties were derived by applying  

the Mori-Tanaka or the self-consistent method. Rule-of-mixture approaches have 

been used in the series of works, for example in elastic systems in [6]. In Ref. [7] 

have been estimated elastic moduli and averages of the Hashin-Sthrikman bounds 

for statistically homogeneous systems. 

In the present contribution the object of investigation is a special class of FGM 

which on the microstructural level are made of two kinds of laminae and will be 

referred to as the functionally graded laminates (FGL). A fragment of FGL on  

the macro and micro levels is shown in Figure 1.  
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Fig. 1. A fragment of FGL on the macro- and microstructural level 

The proposed modelling approach, in contrast to the most computational strate-

gies presently formulated in literature, explicitly couples micro- and macrostructu-

ral effects. This technique was used also in the modelling of elastodynamics of 

functionally graded laminated plates, [8], functionally graded laminated shells, [9], 

and functionally graded laminates with interlaminar microcracks, [10]. In the sub-

sequent sections we are to outline some of results of the studies on the mathemati-

cal modelling of functionally graded materials which are recently carried out at the 

Institute of Mathematics and Computer Science, [5, 11]. 
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2. Basic notions and concepts 

The considerations will be restricted to the dynamic behavior of functionally 

graded laminates (FGL). These solids are made of a large number of layers with  

a constant thickness and every layer consists of two homogeneous, linear-elastic 

laminae. Moreover, thicknesses of laminae in pertinent layers are different so that 

the macroscopic material characteristics of FGL can be treated as continuously 

varying in the direction normal to the layering. It is assumed that the pertinent 

laminae are perfectly bonded. For the sake of simplicity it is also assumed that 

lamina materials have elastic symmetry planes parallel to the lamina interfaces.  

To make our considerations self consistent we recall some of the denotations 

and basic concepts which are presented in [5, 11].  

Small bold-face letters stand for vectors and points in 3-space, large bold-face 

letters denote second-order tensors and block letters are used for the third- and 

fourth-order tensors. The scalar and double-scalar products of these objects are 

denoted by the dot or the double dot between letters. By 0x1,x2,x3 we denote the 

orthogonal Cartesian coordinate system in the physical space. Let ( )0, ,LΩ = ×Π  

2
,RΠ⊂  be the region in this space occupied by FGL in its natural configuration. 

The 1-axisOx  is normal to the lamina interfaces. We introduce the gradient opera-

tors ( )1 2 3
, ,∇ = ∂ ∂ ∂  and ( )2 3

0, ,∇ = ∂ ∂  where ∂k, k = 1,2,3, stand for the partial 

derivative with respect to the Cartesian coordinate xk. The time derivatives are 

denoted by the overdot. 

Let m be the number of layers of FGL solid. The thickness of every layer is the 

same and denoted by l; hence L ml=  is the thickness of FGL, 1
1.m

−

<<  Thick-

nesses of lamina in the n-th layer, n = 1,..., m, are denoted by ,
n
l′  ;

n
l′′  it follows 

that ,

n n
l l′ ′=ν  

n n
l lν ′′ ′′=  are volume fractions of lamina materials in this layer. 

Mass densities and tensors of elastic moduli in every pair of adjacent laminae will 

be denoted by ,ρ ρ′ ′′  and , ,′ ′′C C  respectively.  

By ( ) ( ) ( ), 1ν ν ν′ ′′ ′⋅ ⋅ = − ⋅  we denote slowly varying functions defined on [ ]0, L  

such that ( )0 1,′ =ν  ( ) 0,L′ =ν  these functions represent mean volume fractions of 

lamina materials. Let ν ν ν′ ′′≡ɶ ; ( )ν ⋅ɶ  will be referred to as the phase transition 

function. Let [ ]: 0, Rg L →  be a continuous function the diagram of which in an 

arbitrary interval ( )1 , ,n l nl −   n = 1,...,m, is shown in Figure 2.  

This function will be referred to as the fluctuation shape function. Now, we in-

troduce certain notions which enable us applying the tolerance averaging tech-

nique to the modeling of functionally graded laminate under considerations. Let us 

denote by ( ) [ ]1 1 1
/ 2, / 2 ,x x l x l∆ = − +  [ ]1

0,x L∈  a certain “idealized” (or virtual) 

cell which consists of two subcells of lengths ( )1 ,x l′ν  ( )1 .x l′′ν   
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Fig. 2. A diagram of the fluctuation shape function in an arbitrary interval [nl, (n+1)l] 
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Fig. 3. A diagram of the l-periodic approximation of the fluctuation shape function  

in the idealized cell 
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Moreover, let ( ) ,yℂ  ( ) ,yρ  ( )1 ,y x∈∆  [ ]1
0,x L∈  be the functions which attains 

constant values ,ρ′ ′ℂ  and ,ρ′′ ′′ℂ  in the pertinent subcells. It can be seen that 

functions ( ) ,yℂ  ( )yρ  have the physical interpretations provided that [ ]0, .y L∈  

For an arbitrary integrable function ( ) ,f y  ( )1y x∈∆  we define 

 ( ) ( )
1

1

/ 2

1

/ 2

1
x l

x l

f x f y dy
l

+

−

= ∫  (1) 

By ( )g y
∗ , ( )1y x∈∆  we denote l-periodic approximation of the fluctuation shape 

function ( ).g ⋅  A diagram of ( )g y
∗  for an arbitrary, but fixed ( )1

0,x L∈  is shown 

in Figure 3. 

3. Modeling technique 

In this section we are going to describe a dynamic behavior of the linear-elastic 

FGL by means of PDEs with smooth functional coefficients. Moreover, the pro-

posed model has to describe this behavior also on the microstructural level by  

taking into account the effect of lamina thickness on the averaged characteristics 

of FGL. At last, the model equations should have a relatively simple form which 

makes it possible to obtain also analytical solution to selected benchmark prob-

lems. 

The mathematical model of the functionally graded laminate under considera-

tion will be formulated using the tolerance averaging technique [12]. We restrict 

ourselves to problems in which at every time t the displacement field 

w = w(x,t), ( )1 2 3
, ,x x x= ∈Ωx  across the thickness of every lamina can be appro- 

ximated by a linear function of [ ]1
0, .x L∈  This is the first kinematic modeling 

assumption. The second modeling assumption states that displacements in every 

interval [ ]1 1
, ,x x l+  [ ]1

0, ,x L l∈ −  can be approximated (within a certain tole- 

rance) by l-periodic functions of argument x1. For the detailed discussion of the 

above assumptions the reader is referred to [12]. In this case the aforementioned 

approximations lead to the following decomposition of the displacement field 

 ( ) ( ) ( ) ( )1
, , ,t t g x t= +w x u x v x  (2) 

where u and v are slowly-varying functions of argument x1 (related to the period l 

and a certain tolerance parameter ε, 0<ε <<1). It means that increments of u and v 

in every interval [ ]1 1
, ,x x l+  [ ]1

0,x L l∈ −  can be neglected as small when com-
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pared to the supreme values of their modulae. Functions u and v in (1) are basic 

kinematic unknowns where u  is the averaged displacement field and v is referred 

to as the fluctuation amplitude field. Bearing in mind (1) we obtain  

 ( ) ( ) ( )1 1 1
,x x x′ ′ ′′ ′′= +ρ ν ρ ν ρ  

 ( ) ( ) ( )1 1 1
,x x x′ ′ ′′ ′′= +ℂ ℂ ℂν ν       [ ]1

0,x L∈  

 

Setting ( )1,0,0=e  we also denote 

 [ ] ( )( )
*

1
2 3 ,

dg
x

dy
′′ ′= ⋅ = − ⋅e eɶℂ ℂ ℂ ℂν  [ ] ( ) ( )12 3

T

x′′ ′= ⋅ −e ɶℂ ℂ ℂ ν  

 { }( ) ( ) ( )( )
2

*

1 1 1
12

dg
x x x

dy

 
′ ′′ ′′ ′= ⋅ ⋅ = ⋅ + ⋅ 

 
C e e e eℂ ℂ ℂν ν  

 

Taking into account results derived in [12] it can be shown that the governing 

equations for u and v are 

 
[ ]( )

( ) { } [ ]2 2 2 2

:

: :

T

l l

−∇ ⋅ ∇ + ⋅ =

− ∇ ⋅ ∇ + ⋅ + ∇ =

u u v 0

v v C v u 0

ɺɺ

ɶ ɶɺɺ

ρ

ν ρ ν

C C

C C

 (3) 

The model equations (3) together with formula (2) represent what is called the 

tolerance model of the functionally graded laminate under considerations. It has to 

be emphasized that functionally coefficients in (3) are slowly varying functions of 

argument x1. Equations (3) have to be considered with initial conditions for u and 

v, boundary condition for u on ( )( ) { }( ) { }( )0, 0L L∂Ω = ×∂Π ∪ ×Π ∪ ×Π  and 

boundary condition for v on ( )0, .L ×∂Π  The main feature of the above model is 

the coupling between macro- and micro-mechanics of a laminated medium, repre-

sented by the presence of the microstructure length parameter l in the second from 

equations (3). Equations (2), (3) constitute the basis for the subsequent analysis. 

Let us observe that tensor field {C} represents the non-singular linear trans-

formation. Hence from (3), after the formal limit passage 0,l→  we obtain 

 { } [ ]
1

:

T−

= − ⋅ ∇v C uC  (4) 

where {C}
−1
 is the inverse of {C}. Introducing the following fourth-order tensor  

 [ ] { } [ ]
1 T−

≡ − ⋅ ⋅C
�

C C C C  (5) 
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and using the first from equations (3) we obtain 

 ( ): 0ρ −∇ ⋅ ∇ =u u
�

ɺɺ C  (6) 

It can be shown that �

ℂ  coincides with the tensor of effective elastic moduli well 

known in the homogenization theory of elastic laminates. Equations (6) and (4) 

together with formula (2) represent the homogenized (or effective) model of the 

linear-elastic functionally graded laminate under consideration.  

Now, we present the equations (3) in the alternative form. To this end, instead 

of fluctuation amplitude v, we introduce a new kinematic unknown ( )⋅r  defined by 

 { } [ ]
1

:

T−

= ⋅ ∇ +r C u vC  (7) 

Let us observe that for the homogenized model we obtain r = 0. That is why r will 

be referred to as the intrinsic fluctuation amplitude, i. e., the amplitude independ-

ent of the averaged displacement field u. At the same time from (2) and (7) we 

obtain 

 ( ) ( ) ( ){ } [ ] ( ) ( ) ( )
1

1 1
, , : , ,

T

t t g x t g x t
−

= − ⋅ ∇ +w x u x u x r xC C  

where gr will be called the intrinsic fluctuation of displacement. In order to for- 

mulate equations for functions ( )⋅u  and ( )⋅r  in the simple form we introduce the 

following differential operators 

 ( ):A ρ≡ −∇ ⋅ ∇u u u
�

ɺɺ C  

 ( ) { }2 2
:D l  ≡ −∇ ⋅ ∇ + ⋅

 
r r r C rɶ ɺɺν ρ C  

 { } [ ] { } [ ]( )( )1 12 2
: : :

T T

F l
− − ≡ ⋅ ∇ −∇⋅ ∇ ⋅ ⋅ ∇

  
u u uɶ ɺɺν ρ C C C C C  

Combining equations (3) with formula (7) we obtain the system of model equa-

tions for u and v 

 [ ] :

T

A

D F

= ∇

=

u r

r u

C
 (8) 

which is equivalent to model equations (3). A dynamic behavior of the func- 

tionally graded laminate described by the averaged displacement u will be referred 

to as a macro-dynamic while that described by the intrinsic fluctuation r will be 

called a micro-dynamic. 
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4. Conclusions and perspectives 

New results obtained in this contribution and some perspectives of the research 

are presented below: 

1. The mathematical model for investigations of the linear-elastic behavior of 

FGL was derived on the basis of a certain heuristic assumption. The kinematics 

of FGL in the framework of this model is described by two vector fields u and v 

which satisfy general model equations (3). Fields ( )⋅u  and ( )⋅v  describe the 

averaged and fluctuational parts of the displacement field, respectively.  

The model equations make it possible to analyze the effect of microstructure 

size of FGL on its overall behavior, in contrast to the local homogenized model 

used in the recent literature. 

2. After decomposition fluctuations of displacement into the part uniquely deter-

mined by the gradient of averaged displacement field and the intrinsic part  

representing micro-dynamic behavior of FGL the analysis of micro- and macro-

behavior of FGL can be independently carried out. This analysis is based on the 

model equations (8) and will be presented in the forthcoming paper [13]. 

3. The proposed theory which explicitly couples micro- and macro-structural  

effects will be developed and applied to functionally graded materials with  

spatially varying microstructures in three orthogonal directions. 
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