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ON THE MODELLING OF HYPERBOLIC HEAT CONDUCTION 

PROBLEMS IN PERIODIC LATTICE STRUCTURES
∗ 

Jolanta Szymczyk, Czesław Woźniak 

Institute of Mathematics and Computer Science, Czestochowa University of Technology 

Abstract. A new modelling approach to the hyperbolic heat conduction problems in perio-

dic lattice structures of an arbitrary form is discussed. Taking into account the results ob-

tained in [5] we introduce a special description of the periodic lattice geometry which leads 

to the heat conduction model governed by the system of finite difference equations. The 

continuum models are derived from the finite difference equations by using the principle 

of stationary action. 

1. Introduction 

It is well known that the direct approach to the non-stationary heat conduction 

or dynamic problems for dense periodic lattice systems leads to the computational 

difficulties due to a large number of ordinary differential equations describing the 

problem under consideration. That is why the main attention in mathematical mo- 

delling of periodic structures is focused on the formulation of averaged continuum 

models. This approach is based either on certain heuristic assumptions and smooth- 

ness operations or on the asymptotic homogenisation procedures [2, 6]. The main 

drawback of homogenized models is that in the course of modelling the effect of 

the unit cell size on the global behaviour of lattice structure is neglected. More 

sophisticated modelling approach is based on the concept of the tolerance related 

to the accuracy of measured or calculated values of physical fields [10]. This 

method, referred to as the tolerance averaging technique, leads to a certain periodic 

cell problem which involves terms depending also on the period lengths. The appli- 

cation of the tolerance averaging method to the analysis of special engineering 

problems can be found in [10, 11]. Both the homogenisation and the tolerance 

averaging technique are restricted to the problems in which fluctuactions of basic 

fields (like temperature or displacement) are periodic-like functions [10]. More 

general modelling technique which does not contain this requirement was recently 

proposed in [3, 4, 8], where the continuum averaged models are derived from 

certain discrete models (by assuming that the typical macroscopic wavelength is 

sufficiently large when compared to the period lengths) of analysed periodic 

structures. 
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The aim of this contribution is to outline a new modelling approach to the hy-

perbolic heat conduction problems in periodic lattice structures of an arbitrary 

form. To this end the Cattaneo constitutive heat conduction equation is taken as 

the physical basis of analysis. 

Notations. Small and capital bold face characters stand for vectors and second 

order tensors in 3D-space, respectively. Indices a, b, run over 1,…, n while A,B 

and K over 0,1,…, M and 1,…, N, respectively. The summation convention holds 

for all the indices repeated twice (unless otherwise stated). Symbol t stands for 

a time coordinate. 

2. Preliminaries 

We begin this paper with some preliminary concepts which have been intro-

duced in [5]. In order to describe geometry of an arbitrary periodic lattice structure 

we introduce the Bravais lattice Λ in the physical space E
3
 with the base vectors 

d1, d2, d3. Hence 

{ }3

1 1 2 2 3 3: , 0, 1, 2,..., 1,2,3
i

E iη η η ηΛ = ∈ = + + = ± ± =z z d d d  

For every subset Ξ  (point p) in E
3
 and for every ∈Λz  we define ( )Ξ ≡ Ξ +z z  and 

( ) ,zpzp +≡  respectively. Let ∆ be the parallelepiped spanned on vectors d1, d2, d3, 

with a center at point 0 and p
a
, a = 1,..., n, be the system of points in ∆. Hence 

( ){ }: : 1,..., ,
a

P a n= = ∈Λp z z  represents the periodic system of points in E
3
. 

Define d0 = 0 and let D = (d0, d1,..., dM), dA ∈ Λ, A = 0,1,..., M, M ≥ 3, be the 

M+1-tuple of vectors such that dA + dB = 0 implies A = B = 0 for every 

{ }, 0,1,...,A B M∈ . For an arbitrary real valued function ( ) Λ∈zz ,f  we introduce 

finite differences 

( ) ( ) ( ) ( ) ( ) ( ), ,A A A Af f f f f f∆ = + − ∆ = − − ∈Λz z d z z z z d z  

where for A = 0 we have .0
00

=∆=∆ ff  We shall also introduce function 

{ } ( ) ( ) { } { }
2

: 1,..., , , 1,..., 0,1,...,N K K b a A n Mϕ ϕ∋ → ≡ ∈ ×  

where ϕ(K) = (b, a, 0), a > b, and under extra denotation ,

A

aa

A
dpp +=  a = 1,..., n, 

A = 1,..., M, we define ( )a

A

bK
B pp ,=   provided that ( ) ( ).,, AabK =ϕ  It follows that  

( ){ }: : 1,..., ,
K

B B K N= = ∈Λz z  

represents the periodic system of pairs of points ( )( ), ( ) ,
b a

A
p z p z  z ∈ Λ, in E

3
. 
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Throughout this contribution the space E
3
 will be interpreted as the physical 

space, set P as the system of nodes of the lattice structure under consideration, 

whereas set B will represent the system of pairs of nodes which are assumed 

to be interconnected by means of certain thin prismatic rods. Hence the pair 

S = (P, B) describes the geometry of the periodic lattice structure and the pair 

{ } { }( )1 1
,..., , ,...,

n N
E B B= p p  represents the representative element of this struc-

ture. For the sake of simplicity every B
K

 (z), z ∈ Λ, will be referred to as a rod of 

the lattice structure. Subsequently, we restrict ourselves to unbounded lattice 

structures. 

Following [8], we shall outline now some basic physical concepts related to the 

hyperbolic heat conduction. Let θ  be the temperature field, q the heat flux field 

and k the coefficient of thermal conductivity. It can be shown, [8], that using 

Cattaneo heat conduction equation [1] 

θτ ∇−=+ kqq &  

and introducing a modified temperature defined by 

 
τ

θϑ
2

exp:
t

=  (1) 

we obtain the hyperbolic heat conduction equation of the form 

( ) ( )exp
4 2

c t
k c f fϑ ϑ τ ϑ τ

τ τ
−∇ ∇ − + = + &&&  

where f represents the heat sources. This equation can be derived from the princi-

ple of stationary action by adopting the lagrangian function L in the form 

 ( ) ( ) ( )
221 1 1

exp
8 2 2 2

w

w

c t
L c k f f= ϑ + τ ϑ − ∇⋅∇ϑ+ + τ ϑ

τ τ

&&   (2) 

and using the Euler-Lagrange equations 

 0
L L L

t

∂ ∂ ∂ ∂ 
− −∇ ⋅ = 

∂ϑ ∂ ∂ϑ ∂∇ϑ &
 

Using the above concepts we shall formulate in the subsequent section a finite 

difference model of the heat conduction in the periodic lattice under considera-

tions. 
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3. Finite difference model 

Let us assume that every rod ( )zKB  interconnecting nodes ( ),zp
b

 ( ),zp
a

A
 where 

( ) ( ), ,K b a Aϕ = , is a heat conductor between these nodes. Let c
K
, λ
K
, τ, F

K
 stand 

for the specific heat, thermal conductivity, relaxation time, cross-sectional area 

of rod ( ),z
KB  z ∈ Λ, K = 1,…, N, respectively. We also assume that the heat flow 

in every rod is one dimensional and heat sources can depend only on time. Denote 

by ( ), ,

a a

tθ θ= z  z ∈ Λ, a = 1,…, n, the temperature of the node ),(zp
a  z ∈ Λ, 

at time t; hence the temperature of the node ( ),zp
a

A
 z ∈ Λ, will be given by 

( ) ( ) ( ), , ,

a a a

A A
t t tθ θ θ= + ∆z z z ; similar denotations also hold for the modified 

temperature ϑ. Let l
K
 be the length of a rod B

K
 and ∆  stand for the volume of ∆. 

Bearing in mind (1) and (2) we shall introduce Lagrangian LK for the rod 

( ),

K b a

A
B = p p , K = 1,…, N, ( ) ( ), , ,b a A K= ϕ in the form 

 

( ) ( ) ( )

( ) ( )

1
, , ,

4

exp ,
2

b a b a a b a

K A A A

b a

A

L W W V

t
f f E

= ϑ ∆ ϑ + τ ϑ ∆ ϑ − ϑ −ϑ ∆ ϑ +
τ

+ + τ ϑ ∆ ϑ
τ

& &

&

 (3) 

where: 

( ) ( ) ( )( )( )
2

,
6

K K K

b a b b a a a a

A A A

c l F
W ϑ ∆ ϑ = ϑ + ϑ +ϑ + ∆ ϑ ϑ + ∆ ϑ

∆
 

( ) ( ),
2

K K

b a b a a

A A

l F
E ϑ ∆ ϑ = ϑ +ϑ + ∆ ϑ

∆
 

( ) ( ) ( ) ( )
2

, , , ,
2

K

b a b a a

A AK

F
V K b a A

l
ϑ ϑ ϑ ϑ ϑ ϕ∆ = − −∆ =

∆
 

Hence, the Lagrangian L for the representative element E is  

 
1

N

K

K

L L

=

=∑  (4) 

Using the results obtained in [9] for dynamic problems, it can be proved that func-

tions ( ), ,

a
ϑ ⋅z  a = 1,…, n, z ∈ Λ satisfy the following system of finite-difference 

equations 
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 , 1,...,
A Aa a a a

A A

L L d L L
A M

dt

 ∂ ∂ ∂ ∂
−∆ = −∆ = 

∂ϑ ∂∆ ϑ ∂ϑ ∂∆ ϑ & &
 (5) 

Thus, we have arrived at the infinite system of finite difference equations (with 

respect to argument z ∈ Λ) for the modified temperature ( ), ,

a

tϑ z  a = 1,…, n, 

z ∈ Λ. Equations (5) have to hold for an arbitrary instant t and every z ∈ Λ and 

represent the finite difference model of the hyperbolic heat conduction of the 

periodic unbounded lattice under consideration. 

4. Continuum models 

Let ( ),

a

tϑ ⋅ , a = 1,…, n be sufficiently smooth functions defined on E
3
 for 

every time t, such that for every z ∈ Λ their values can be physically interpreted as 

close approximation of values ( ), ,

a
tϑ z  z ∈ Λ of fields occurring in the finite dif-

ference model. The continuum models of the hyperbolic heat conduction problem 

in a periodic lattice structure will be derived on the basis of the assumption that 

for every 
3

E∈x  and for every vector dA, increments ( ),

a

A
t∆ ϑ x  and ( ),

a

A
t∆ ϑ x

&  

can be approximated by using expansions of the form (no summation over A!) 

 ( ) ( ) ( ) ( )
1

, , : ,
2

A A A A
w t w t w t∆ ≅ ⋅∇ + ⊗ ∇⊗∇x d x d d x  (6) 

where w stands for a

ϑ  and .

a

ϑ&  

Denoting 

1
:

2
A A A
= ⊗D d d  

and substituting (6) into (3) we obtain the new Lagrangian L2 defined by 

 
( )

( ) ( )( )

2
, , , , , :

, : , , :

b a a b a a

b a a b a a

A A A A

L

L

ϑ ∇ϑ ∇⊗∇ϑ ϑ ∇ϑ ∇⊗∇ϑ =

ϑ ⋅∇ϑ + ∇⊗∇ ϑ ϑ ⋅∇ϑ + ∇⊗∇ ϑd D d D

& & &

& & &
 (7) 

which implies the following Euler-Lagrange equations for functions ,

a

ϑ  a = 1,…, n 

 

( )
( )

( )
( )

2 2 2

2 2 2

:

: , 1,...,

a a a

a a a

L L L

L L L
a n

t

∂ ∂ ∂
∇⊗∇ −∇⋅ + =

∂ ∇⊗∇ ϑ ∂∇ϑ ∂ϑ

 ∂ ∂ ∂∂
= ∇⊗∇ −∇⋅ + =  ∂ ∂ ∇⊗∇ ϑ ∂∇ϑ ∂ϑ 

& & &

 (8) 
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The above equations are assumed to hold for every x ∈ E
3
 and every time t and 

represent the system of n partial differential equations for the fields ( ),

a

tϑ ⋅ defined 

in E
3
 for every t. Equations (8) represent what will be called the second order con-

tinuum model of the hyperbolic heat conduction problem in the periodic lattice 

under consideration. Bearing in mind only the first gradients in expansions (6) we 

obtain the Lagrangian L1 defined by 

 ( ) ( )1
, , , : , , ,

b a b a b a b a

A A
L Lϑ ∇ϑ ϑ ∇ϑ = ϑ ⋅∇ϑ ϑ ⋅∇ϑd d& & & &  (9) 

In this case the corresponding Euler-Lagrange equations are 

 
1 1 1 1

0, 1,...,
( ) ( )

a a a a

L L L L
a n

t

∂ ∂ ∂ ∂ ∂
−∇ ⋅ − −∇ ⋅ = = 

∂∂ϑ ∂ ∇ϑ ∂ϑ ∂ ∇ϑ 
& &

 (10) 

and represent what will be called the first order continuum model of the heat con-

duction in the periodic lattice under consideration. It can be shown that equations 

(8) and (10) can be obtained directly from equations (5) by using (6), i.e. without 

the principle of stationary action. This procedure will be shown in the prepared for 

print publication. 

The detailed discussion of the modelling approach outlined in this contribution 

as well as examples of its application will be given in the forthcoming paper. 
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