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Abstract. The aim of this paper is to propose a certain new approach to the formulation of 

both discrete and continuum models for the analysis of dynamic problems in elastic com-

posite solids with a periodic microstructure. The proposed approach is based on a periodic 

simplicial division of the unit cell and on the assumption of a uniform strain in every sim-

plex. The main feature of the obtained discrete model is the finite-difference form of the 

governing equations. By applying smoothing operation the continuum models are derived 

directly from the discrete ones. 

1. Introduction 

In the existing literature we can find many approaches and methods leading to 

the different approximated mathematical models. The best known are those based 

on the asymptotic homogenization theory [3, 6, 10]. However, using this theory we 

are not able to account for the microstructural length-scale effect on the global 

dynamic behavior of the body. So, for analysis of these phenomena a number of 

alternative methods and theories have been proposed, e.g., effective stiffness theo-

ries [1], mixture theories [2], interacting continuum theories [5], general asymp-

totic methods approaches [4], and many others. A review of early papers on this 

subject can be found in [7]. Recently a number of dynamic problems have been 

investigated using the tolerance averaging method [11]. 

The aim of this paper is to show that after introducing a smoothing operations 

to the finite difference equations of a discrete model proposed in [9] it is possible 

to obtain a hierarchy of continuum models describing the macroscopic behaviour 

of a micro-periodic solid on different levels of accuracy. The simplest from the 

aforementioned models leads to the equations of a homogeneous equivalent me-

dium which is not dispersive and can be obtained in the framework of the homo-

genization theory [3, 6, 10]. 

To make this paper self-consistent in the subsequent section we summarise the 

main concepts introduced in [9]. 
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2. Preliminaries 

Let the composite solid under consideration occupies a region Ω in E
3
, has per-

fectly bounded linear-elastic constituents and a periodic structure determined by a 

vector basis 
321

,, ddd  in E
3
. We denote by ∆ a polyhedron in E

3
 such that for every 

∆∂∈x  and some ,

α
d  α = 1, 2, 3, we have either ∆∂∈+

α
dx  or ∆∂∈−

α
dx  

(but not both). Let us also assume that the diameter l of ∆ is sufficiently small 

when compared to the smallest characteristic length dimension of region Ω. In this 

case polyhedron ∆ will be referred to as the unit cell. 

Let Λ be the Bravais lattice in E
3
 

{ }321,....,21,0,::
33221

3
,,   ,    E 

1
=α±±=ηη+η+η=∈=Λ

α
dddzz  

and let us denote 

( ) ∆+=∆ zz : ,  ( ){ }   Ω⊂∆Λ∈=Λ zz ::
0

,  ( ){ }
00

:: Λ∈∆∈=Ω zzx  

where 
0
Ω  is a regular subregion of Ω. A simplicial division of E

3
 will be called 

∆-periodic if it implies the simplicial subdivision of every ( ),z∆  ,Λ∈z  into sim-

plexes ( ),z
k
T  k = 1,...,m, such that ( ) ,zz +=

kk
TT  Λ∈z  where T

k
, k = 1,...,m, 

are simplexes in ∆. Let { }1,...,1:
0

+=∆∈ na 
a

p , ,1≥n  be the smallest set of ver-

texes (nodal points) of T
k
, k = 1,...,m, such that { }Λ∈+=+ zzp  na 

a

,1,...,1:
0

 is the 

set of all nodal points in E
3
 related to a certain ∆-periodic simplicial division of E

3
. 

We shall also introduce a system of vectors ,Λ
A
∈d  A = 0,1,...,N, such that 

0d =
0

 and every vertex related to T
k
, k = 1,...,m, can be uniquely represented by 

a sum .

0 A

a
dp +  It can be seen that N = 7 for spatial problem and N = 3 for plane 

problem. Setting ( ) { } { }{ }∆∈+×+∈=
A

a
 N  n A a I dp

0
:,...,1,01,...,1,:  and denoting 

A

aa

A
dpp +=

0
:  for every ( ) ,, IA a ∈  we conclude that ( ){ }IA a 

a

A
∈,:p  is the set 

of all nodal points in ∆  which is related to the ∆-periodic simplicial division 

of E
3
. Hence every simplex T

k
 can be represented by d

D

c

C

b

B

a

A

k
T pppp=  where 

( ) ( ) .,,...,, ID dA a ∈  Setting ( ){ }0:,:
0

≠∈= AIA a I  we see that ∆∂∈
a

A
p  if and 

only if ( ) .,

0
IA a ∈  Here and hereafter it is assumed that a certain ∆-periodic sim-

plicial division of E
3
 is known. 

For an arbitrary function ( )⋅f  defined on Λ0 we shall define the finite differ-

ences 



Scientific Research of the Institute of Mathematics and Computer Science 

 161

 
( ) ( ) ( )

( ) ( ) ( ) fff

fff

AA

AA

dzzz

zdzz

−−=∆

−+=∆
 (1) 

provided that 
0AA

 , , Λ∈−+ dzdzz . 

Throughout the paper it will be assumed that superscripts a, b, c, d run over 

1,...,n+1, 1≥n , and subscripts A, B run over 0,1,...,N, unless otherwise stated. We 

shall also introduce superscripts p, q which run over 1,...,n. Summation convention 

with respect to all aforementioned indices holds. 

Let ( )t,xw , ,Ω∈x  stand for a displacement field at time t for the solid under 

consideration. Let us denote 

 ( ) ( )( ) ( )
0

a

A

a

A
     ,IAa       ,t t Λ∈∈= zzpwzu
0

,,:,  

Subsequently we shall interpret simplexes T
k
, k = 1,...,m, as finite elements of the 

unit cell ∆ which are subjected to uniform strains. Hence ( )zp
a

A
 are nodal points 

of these elements. Let us also „approximate” region Ω by .

0
Ω  In this case the 

displacement field ( )t ,⋅w  in every cell ( )
0

  Λ∈∆ zz ,  will be uniquely determined 

by displacements ( )t a

A
,zu  of the nodal points ( ),zp

a

A
 ( ) ., IAa ∈  Bearing in mind 

(1) we see that these displacements can be uniquely represented in the form 

( ) ( ) ( ) ( ) IAa   ttt
a

A

aa

A
∈∆+= ,,,,, zuzuzu  

where for A = 0 we obtain ( ) ( ).,,

0
tt

aa

zuzu =  Let u be a certain averaged value of 

,,...,

11 +n

uu  given by 

α

α
ν uu =  

where 0>
α

ν  and .1...
11
=++

+n
νν  The values 

α
ν  will be specified in the sub-

sequent section. Under the above denotations the strain and kinetic energy 

functions for the solid under consideration are respectively represented by: 

 
( )

( )  KK

 UU

ba
A

pa
A

uu

uuu

&& ,

,

∆=

−∆=
α

α
ν

 (2) 

where ( ) ,1,...,1,
0

+=∈ nb,IAa  p = 1,...,n. The coefficients of forms (2) can be 

uniquely determined for every periodic solid. Introducing the differences uu −
p  

as arguments of the strain energy function we have taken into account the trans- 

lational invariance of ( )⋅U . It can be shown [12], that for unknowns ( ),, t
a

zu  
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a = 1,..,n+1, ,

0
Λ∈z  in the absence of body forces, we obtain the system of ordina-

ry differential equations which can be expressed in the following finite-difference 

form 

 1,...,1, +=







∆−

∂

∂
=

∂

∂
−∆ na   

K

dt

dU a

AAaa

a

AA
j

uu
s

&
 (3) 

where: 

 

( )
0

, IAa  ,
K

U

a

A

a

A

a

A

a

A

∈
∆∂

∂
=

∆∂

∂
=

u
j

u
s

&

 (4) 

Equations (3), (4) are assumed to hold for every 
0

Λ∈z  such that 
0

Λ∈±
A

dz  for 

A = 1,...,N and represent a finite difference model of the periodic composite under 

consideration. It has to be emphasised that this model has a physical sense only if 

diameters lk of simplexes T
k
, k = 1,...,m are small as compared to the typical wave-

length of the deformation pattern in the problem under consideration. Thus, for the 

high-frequency vibration problems the number m of simplexes T
k
 and hence also 

the number n of unknowns ( )ta

,zu  for every 
0

Λ∈z  can be very large. Equations 

of the form (3), (4) constitute the foundations of the subsequent analysis leading 

to different continuum models of the micro-periodic solids under consideration. 

3. Simplified finite difference models 

For the given 
11

,...,
+n

νν  let us denote 

b

b

aaa
uuuuu ν−=−=:

~  

It follows that 

0u =
a

a

~
ν  

and hence the fields ( ),,
~

t
a

zu  ,

0
Λ∈z  are linear dependent. In order to satisfy the 

above condition we shall introduce new linear independent fields ( )tqq
,zvv =  

,

0
Λ∈z  such that 

qaqa
lh vu =

~  
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where l is a diameter of ∆ and aq
h  are elements of the ( ) nn ×+1  of an order n, 

satisfying conditions 

0=
aq

a
hν  

Hence 

 qaqa
lh vuu +=  (5) 

and we shall take u and q
v  as the basic unknowns. It can be seen that the above 

formula represents a decomposition of the displacement field a
u  into the averaged 

a

a

uu ν=  and fluctuating a
u
~

 parts. 

Subsequently we shall restrict ourselves to problems in which the increments 
a

A
u
~

∆  of fluctuations can be neglected as small with respect to the increments u
A
∆  

of the averaged displacements. Thus, we shall apply to (2) an approximation 

 uu
A

a

A
∆≅∆  (6) 

which holds for every ( ) .,

0
IAa ∈  The above formula states that in an arbitrary but 

fixed periodicity cell ( ),z∆ ,

0
Λ∈z  the displacement fluctuations can be treated as 

periodic: ( ) ( )tt
aAa

,
~

,
~

zudzu ≅+ , ( ) .,

0
IAa ∈  

Subsequently, for the sake of simplicity we shall also approximate the mass distri-

bution in the periodic medium by a periodic system of concentrated masses m
a

, 

a = 1,...,n+1, assigned to the nodal points. Setting 11
...

+

++=
n

mmm  we shall 

assume that .mm
a

a
=ν  Hence the kinetic energy function will take the form 

∑
+

=

⋅
∆

=

1

12

1
n

a

aaa

 mK uu &&  

where ∆  is a measure of the cell ∆. Taking into account formula (5) we obtain the 

kinetic energy function in the form 

 qppq
Ml K vvuu &&&& ⋅+⋅=

2

2

1

2

1~
ρ  (7) 

where 

∑
+

=
∆

=
∆

=ρ
1

1

1
n

a

apaqapq
hhmM,

m
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Taking into account (5) and (6) we obtain from (2) the strain energy function 

 uvvvuu A
qq

A
qppq

BAAB cbaU ∆⋅+⋅+∆⋅∆=
2

1

2

1~
 (8) 

which is a density per the unit measure of ∆. Because of ( )lO
A

∈∆ u  we have 

( )2−∈ lOa
AB

, ( )1−∈ lOc
q
A  and ( )1Ob

pq
∈ , i.e., all terms in (8) are the same order. 

Using (7) and (8) we shall transform equations (3), (4) to the form: 

 
0

2
=∆++

=∆+∆

uvv

uvs

A
p
A

qpqqpq

q
A

q
AAA

cbMl

c

&&

&&ρ
 (9) 

where 

us
BABA

a ∆=  

The above equations hold for every 
0

Λ∈z  and time t and represent a simplified 

finite difference model of the periodic composite medium under consideration. 

Let us observe that ( )22
lOMl

qpq
∈v&&  and the values of all other terms in (9) are 

independent of l. Hence, for a sufficiently small l we can apply the limit passage 

l → 0. In this case the first term in the second from equations (9) will be neglected 

and we arrive at the equations 

uv A
p
A

qpq
cb ∆−=  

Since pq
b  represent the non-singular nn×  then denoting by pq

B  elements of the 

inverse matrix and setting 

p
A

qpq
AABAB cBcaa −=:

0  

the first from equations (9) yields 

 uu && a BAAB ρ=∆∆
0  (10) 

Thus we have arrived at the single equation for the averaged displacement field 

( ),, tzu .

0
Λ∈z  The above equation together with formulae 

 uv A
p
A

qpq
cB ∆−=  (11) 

represent what will be called the asymptotic discrete finite element model of the 

periodic composite under consideration. Let us observe that for stationary prob-

lems the second from equations (9) coincide with equations (11). 
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Discrete models governed by equations (9) and (10) will be treated in subsequent 

analysis as a basis for the formulation of continuum models. The main advantage 

of the aforementioned equations is that they involve finite differences with respect 

to only one unknown field u, in contrast to equations (3), (4). This fact will imply 

the relatively simple form of pertinent continuum model equations which will be 

derived in the subsequent section. It has to be remembered that equations (9), (10) 

can be applied exclusively to the analysis of the long wave problems. 

4. Continuum models 

Let ( ),, t⋅u  ( )t
A
,⋅s  be arbitrary sufficiently smooth fields defined on Ω, which 

after restricting their domain Ω to 
0
Λ  reduce to fields ( ),, tzu ( ),, t

A
zs ,

0
Λ∈z  

occurring in (9). In order to obtain a continuum model of the periodic solid under 

consideration, we shall assume that for every 
0

Λ∈z  and every y such that l≤y  

and Ω∈+ yz , the aforementioned smooth fields can be approximated by means 

of the formulae 

( ) ( ) ( ) ( ) ( ) ( )
1

, , , : ,
2

t t t t+ ≅ + ⋅∇ + ⊗ ∇⊗∇w z y w z y w z y y w z  

where w stands for u and sA. From the above approximation we also obtain 

( ) ( ) ( ) ( ) ( ) ( )tttt ,:
2

1
,,, zwyyzwyyzwzw ∇⊗∇⊗−∇⋅+−≅  

Hence, under denotations (no summation over A!): 

1
:

−

= l 
AA

de  

AAA
eeE ⊗=

2

1
:  

we conclude that the following approximations: 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )t ltlt

t ltlt

AAAAAA

AAA

,:,,

,:,,

2

2

zsEzsezs

zuEzuezu

∇⊗∇−∇⋅≅∆

∇⊗∇+∇⋅≅∆
 (12) 

hold for every .

0
Λ∈z  Substituting the right-hand sides of the above formulae into 

(9) and denoting 
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l c     ,         l c

l a    ,l a

A
q
A

q
A

q
A

q

BAABBAAB

ehEH

eeCEEG

==

⊗=⊗=

::

::
22

 (13) 

after simple manipulations we obtain 

 

( ) ( )[ ] ( )

( )

( ) nqlbMl

l

l

qqqpqqpq

qqqq

,...,1,0:

:

::

2

2

==∇⊗∇+∇⋅++

=∇⋅+∇⊗∇−

+∇⋅⋅∇+∇⊗∇∇⊗∇−

uHuhvv

uvhvH

uCuG

&&

&&ρ  (14) 

Because ( ) ( )t t
q
,,, ⋅⋅ vu  are functions defined for every time t on region Ω we have 

arrived at the system of n+1 differential equations (14) for n+1 unknown vector 

fields u, .

q
v  The aforementioned equations represent what will be called the sec-

ond order continuum model of the periodic composite medium under considera-

tion. It has to be emphasised that for an averaged displacement field u we have 

obtained the partial differential equation and for the displacement fluctuations q
v  

the system of n ordinary differential equations. It follows that the boundary condi-

tions can be imposed only on the averaged displacement field; we deal here with  

a situation similar to that occurring in the tolerance averaging model equations 

[11]. 

Applying approximations (12) to equation (10) and denoting: 

 

0 2

0

0 2

0

:  

:  

AB A B

AB A B

a l

a l

= ⊗

= ⊗

G E E

C e e

 (15) 

we obtain 

 ( ) ( )[ ] ( ) uuCuG && l ρ=∇⋅⋅∇+∇⊗∇∇⊗∇−
00

2
::  (16) 

The above equation represent the asymptotic second order continuum model of the 

medium under consideration. 

Now assume that instead of (12) we introduce the linear approximations: 

 
( ) ( )

( ) ( )t lt

t lt

AAAA

AA

,,

,,

zsezs

zuezu

∇⋅≅∆

∇⋅≅∆
 (17) 

In this case equations (9) reduce to the form: 

 
( )

n,...,q   ,bMl

 

qqpqqpq

qq

10
2

==∇⋅++

ρ=∇⋅+∇⋅⋅∇

uhvv

uvhuC

&&

&&

 (18) 
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where C and 
q

h are defined by formulae (13). The above equations represent the 

first order continuum model of the periodic composite medium. Similarly, from 

(10) we derive equation 

 ( ) uuC && ρ=∇⋅⋅∇
0

 (19) 

representing the asymptotic first order continuum model of the medium under con-

sideration. 

Subsequently we shall apply the obtained model equations only to the analysis 

of the wave propagation in an unbounded medium; that is why in this paper we 

shall not discuss the physical meaning of boundary conditions related to equations 

(14), (16), (18) and (19). It can be shown [8], that the aforementioned equations 

together with pertinent natural boundary conditions can be also derived from the 

principle of stationary action. 

Summarising the obtained results we shall state that the macroscopic dynamic 

behaviour of the elastic composites with a periodic microstructure can be analysed 

in the framework of different continuum models described by independent systems 

of equations (14), (16), (18) and (19). The above equations have constant coeffi-

cients which depend on the geometric and material structure of the unit cell, i.e. on 

vectors ,Ae  A = 1,...,N, and coefficients of the quadratic forms (7), (8) related 

to a discrete model. Solutions to these equations have a physical sense only if 

the approximation formulae (12) or (17) are satisfied with a sufficient accuracy. 

Obviously, the derived continuum models describe the dynamic behaviour of the 

composite on different levels of accuracy. Thus, the problem arises what is the 

interrelation between these models and their accuracy when compared to the dis-

crete model given by equations (3), (4). More detailed discussion of the above 

problem and applications of the proposed models will be given in the forthcoming 

paper. 

Conclusions 

Among new results obtained in this contribution the following ones seem to 

be most important. 

1. The proposed discrete model makes it possible to obtain independent systems 

of equations for displacement fluctuations ( )t,q
zv , q = 1,...,n, in every cell 

( ) . ,

0
Λ∈∆ zz  

2. The proposed continuum models are governed by the partial differential equa-
tions only for the mean displacement field ( ).⋅u  Displacement fluctuation fields 

( )⋅q
v  are governed by ordinary differential equations involving only time deriva- 

tives of ( )⋅q
v . It follows that in stationary problems fields ( )⋅q

v  are governed by 

linear algebraic equations and can be eliminated from governing equations. 
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3. The displacement fluctuations q
v  are governed by a system of linear algebraic 

equations also in dynamic problems provided that we apply the asymptotic 

approximation both to discrete and continuum model equations. 

4. Apart from the asymptotic first order continuum model, all proposed models 
take into account the effect of the microstructure size on the dynamic behaviour 

of a composite solid, which plays an important role in the dispersive analysis 

of dynamic problems. 

5. From a formal point of view the second order continuum model (14) correspond 
to that obtained in the framework of the tolerance averaging method [11]. 

It has to mentioned that in most engineering problems the number n of displace-

ment fluctuations can be large and solution to these problems requires applications 

of the computational methods. 
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