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Abstract. Let T be a metric space, X - n-dimensional Euclidean space and P:7T — 2 -
continuous multifunction with compact convex values. We will show that multifunction

T 5t — extP(t) € 2" is lower semicontinuous.

1. Definitions

By T we will denote the metric space, by X - n-dimensional Euclidean space
(although definitions and facts below can be stated in a more general setting).
1. We say that:

a) a set Ac X is convex, if whenever it contains two points, it also contains
the line segment joining them; ,algebraically speaking” A4 is convex, if
Ax+(1—A)y € A whenever x,ye 4 and 0<A<1;

b)a point e A4 is an extreme point of A if and only if whenever
e=x+(1-A)y,x,ye 4,0< A<, then x=y=e (by extd we will denote

the set of extreme points of A);
c¢) the convex hull of 4 — X (denoted by convA) is the set of all convex combi-
nations of points of 4

ch:z{x:xzzn:/i,x, X, €A, A4 ZO,Zn:/l,- :1}
i=l i=1

d) a point e 4 is an exposed point of this set if there is an 7 € X such that
f(e)> f(x) whenever e= x, xe A (we then say that functional f exposes

point e) (an exposed point ec A4 is always extreme (if not, there would
existx, ye A, x+#e,y#e and number A< (0,1) such that e=Ax+(1—-A1)y.

On the other hand, by the linearity of the exposing functional f we would
have Af(e)+(1-A)=Af(x)+(1—-A)f(»). But eis exposed, so f(e)> f(x),
f(e)> f(»), a contradiction), but the converse need not be true even in R>.
For instance, let B denote the closed unit ball in the plane and p ¢ B. Draw
tangent lines from p to B, intersecting this at points x and y. Then the line
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segments px and py together with the larger arc xy of B form compact con-

vex set C. Points x and y belong to extC, but they are not members of the set
expC, the set of exposed points of C);

e) a slice of the set 4 determined by € X and « > 0 is the set

S(A, f.a)={xe d: f(x)>sup{f(x):x € A} —a}

2. Denote by d metric generated by the norm in X. For the sets 4, Bc X we
define:
a) h'(4,B):=supid(a,B):a e 4}
b) #(4, B):=max{h" (4, B).h" (B, A)}
The number h(A, B) is called the Hausdorff distance between the sets 4 and B.

The set of nonempty closed subsets of X with Hausdorff distance is a metric
space.

3. The support function of a nonempty set A — X is a function from X" into
RU {+ oo} defined by (7, 4):= sup{f(a): ac A},
A multifunction P is a mapping from the space T into nonempty subsets of
aspace X. Let & # 4 c X. We will use the following notation:

PH(4):={xe X :P(x)c 4}
P (4)={xe X:P(x)n 4=}

4. We say that multifunction P:7 — 2% —{&} is:
a) lower semicontinuous, if the set P~ (V) is open in 7 for every V open in X;

b) upper semicontinuous, if the set P* (V) is open in 7 for every V open in X;
¢) continuous, if it is both lower- and upper semicontinuous.

2. Facts

In this section we state without proof more or less known facts which will be

needed in further considerations.

1. (Krein-Milman theorem) A compact convex set 4 X is equal to the closed
convex hull of its extreme points.

2. (Straszewicz theorem) A compact convex subset of R” is equal to the closed
convex hull of its exposed points.

3. In a compact convex set 4 < X the set exp 4 is dense in the set ext 4.

4.1f 4 is as above and point e€ 4 is exposed with exposing functional £, then
from the fact that f(x, )T f(e) for arbitrary chosen sequence (x,)c 4 it
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follows that x, ——> e in the topology of X (that is slices of A determined by

fform a base of neighbourhoods of e in the relative topology of A).
5.If A, B are nonempty, closed and convex subsets of X, then

h(A,B):supﬂc(f,A)—c(f,Bl:||f|| Sl}

6. A multifunction P:T —2" —{@} is lower semicontinuous if and only if for
every sequence (¢,)— T and any point x, € P(¢, ) there exists sequence (x,)c X
convergent to x, and such that x, € P(tn )

7. A multifunction P:T —2% — {@} with compact values is upper semicontinuous
if and only if for every €T, every sequence (tn)c T convergent to f, the se-
quence (x,)c X, x, € P(t,) has a subsequence convergent to the limit belon-
ging to P(t).

8. A multifunction P:7 —2* —{&} with compact values is continuous if and
only if it is continuous in the Hausdorff metric.

3. Result

Let 7 be a metric space, X —n dimensional Euclidean space, P: T — 2% — {7}

- continuous multifunction with compact convex values.
Then multifunction

t — extP(r)

is lower semicontinuous.
Proof. Let (¢,) be a sequence in 7, convergent to the point (¢,)e 7. We have

to show, that for each such sequence and any q, € extP(tO) there exists sequence
(an ), a, e extP(tn ) such that @, ——>a,.

Let e, be any exposed point of P(¢,). Then there exists functional 7, € X"
with unit norm, exposing ¢,. P is lower semicontinuous, so there exists sequence
(xn)c X, x,——=—>ey, X, € P(tn).

Fix y >0 and define the set
R, (1,):=1{xe P(t,): £, (x)> c(f0. P(1,)) - 7}

Then there exists n, € N such that for every n > n, we have Ry(tn)m extP(t,)# @.

Suppose not. Then for each n,eN there exists n>n, for which
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Ry(tn)m extP(tn):@, ie. €XlP(tn)C X —Ry(tn). This yields existence of a sub-
sequence n, ———> with the following property: for each ee extP(tnk) there

holds an inequality
@) <elso. Pl )=

By the Krein-Milman theorem P(t ): clcvextP(t ), so for any x e P(tnk ) we have

m, ",

fi&)<elf. P, )-»

In particular
folx, )= elfo P, )-7. k=12....
Taking limits of the both sides we obtain

fo(eO)Sc(fo,P(tO))—y

a contradiction.

Now let yzi,m:1,2,... and consider slices R, (). Then for each m there
m 1

exists n,, such that for n>n,, we have

R, (t,)nextP(t,)# D

m

We can assume that »n,, <n <n,,,. For such n choose

m+1*

e, eR, (tn )m extP(tn)

m

We have thus obtained a sequence (e”) with the property

fo(en)zc(fo,P(tn))—%

for n, <n<n,,,.
There exists a subsequence of the sequence (e, ) (denote it also by (e, )), conver-

gent to the point eo € P(to). Continuity of P as well as compactness and convexity
of its values then yield
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‘fflﬁgIC(f P(t,)-c(f. Pty)) = B(P(, ). P(ty))——>0

Thus c(f,P(tn))—,q_)—w—)c(f,P(to)). But for n,<n<n we  have

m = m+1

fo(en)ZC(fO,P(tn))—l;we also haveﬁ)(en)—n_)—w%ﬁ)(zo), sofo(;o)z c(fO,P(to))
m

and finally eo = €,-

Now by the Facts 2 and 3 we have that the set P(z, ) is equal to the closed con-
vex hull of its exposed points and that those points form a dense subset in
extP(tO )

Now let ag be any point of extP(t,). Choose and fix n, € N and ¢!  exp P(t,).

There exists sequence (b},lb,i eextP(tO), convergent to e;'. Then there exists

1 n .
n, > n, such that for n>n,we have |¢}! —b!||<—. Now take ¢}* € expP(tO) with

n

n

1 n
e’ —ao” <n_ and sequence (bf) b} cextP(t,), convergent to e)?. Then there
2

1 - .
<—. Continuing this way
0]

exists n, >n, such that for n>n, we have [e}?> — b’

we obtain sequences (b,’,l b, € extP(tn). Putting a, =5 for n, <n<n,, we finish

constructing of a desire sequence (an ), a, e extP(tn ), a,———>a,. This proves

that multifunction extP(z, ) is lower semicontinuous.

Remark

A.A. Tolstonogov and A.l. Figonienko proved the same result in a more general
setting- with X being a Banach space. However they used quite different, topologi-
cal methods. The proof presented here seems to be appealing to the intuition by its
geometric character. Moreover, it seems possible to use this method in proving the
result for a Banach space and even in proving a generalization of this result,
namely, with multifunction P having only closed convex values.
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