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Abstract. The object of investigation is an open exponential network with a messages  

bypass of systems in transient behavior. The purpose of the research is to find stationary 

probabilities of states and the average characteristics of the network when the transition 

probabilities between the messages and bypass systems of the network, parameters of the 

incoming flow of messages and services are time-dependent. To find the state probabilities 

and the characteristics of a network is used the apparatus for the multivariate generating 

functions. The examples are calculated on a computer. 

1. General information 

The results of research of the above networks in stationary behavior are given in 

[1-3]. In [4] investigated the network in a transition behavior, but when the proba-

bility messages bypass between systems, networks do not depend on network status 

and time. To find the state probabilities of the network in a transition mode, we 

used the method of multidimensional generating functions, which was previously 

used to find the state probabilities of the other networks [5, 6]. In this paper we 

consider the case when the transition probabilities and messages bypass between 

the network systems depend on time. 

2. Formulation of the problem 

Consider an open exponential QN of arbitrary structure consisting of n QS, 

enumerated by numbers from 1 to n. Messages have a chance to join the queue, and 

with an additional probability to move immediately in accordance with the transi-

tion probability matrix of the other QS, or leave the network. The probability of 

joining the QS depends on the state of the QS and the number of QS with which 

the messages are sent to this QS. It is assumed that the incoming flow of applica-

tions to the network is simple. The results of studies of such networks in the steady 

state are given in [1-4]. This paper describes a method of finding the time-

dependent state probabilities of the network of such a network in the transient state. 
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Let 
i

m  - number of identical service lines in the QS 
i
S , 

i
I  - a vector of dimen-

sion ,n  consisting of zeros except the i-th  component, which is equal to 1, ni ,1= ; 

ijp  - the transition probability of the message after service in the system 
i
S  into 

the system jS , nji ,0, = , we assume the system 
0

S  is the external environment. 

Let us consider the case when the parameters of the incoming flow of messages 

and services depend on time, i.e. the time interval ),[ ttt ∆+  in the network receives 

an message with a probability )()( tott ∆+∆λ , and if at the time t  of service on the 

line i-th QS is located an message, at the range ),[ ttt ∆+  of its services will end 

with a probability )()( tott
i

∆+∆µ , ni ,1= . The message is sent to the i-th QS with 

probability 
i

p
0
, 1

1

0
=∑

=

n

i

i
p . The message sent to this QS from the external envi-

ronment at moment time t, with a probability ),(
)( tkf i , when the network is in 

a state ( )tk , , joins the queue, and the probability ),(1
)( tkf i

−  
is not attached to the 

queue, regardless of handled (i.e., it’s time of service with a probability of 1 is 

equal to zero). If the message has been served in the i-th QS, it is likely to be sent 

immediately to the j-th QS with probability ijp , and leaves the QN with the proba-

bility 
0i

p , 1

0

=∑
=

n

j

ijp , ni ,...,1= . 

Let ( ) ),,...,,(),(
21

tkkktktk
n

==  - the state vector of the network, where 
i
k  - the 

number of messages at the moment t  in the system i
S , ni ,1= ; ( )tk

i
,ϕ  - the condi-

tional probability that the message is delivered to the i-th QS at time t, when the 

network is in a state ( )tk , , will not be serviced by any of the QS; ( )tkij , ψ  - the 

conditional probability that the message is delivered to the i-th QS outside at time t, 

when the network is in state ( )tk , , the first time, a service in j-th QS; ( )tk
i

,α  - the 

conditional probability that the message, served in the i-th queuing system at time 

t, when the network is in a state ( )tk , , will no longer be served in any of QS; 

( )tkij ,β  - the conditional probability that the message, served in the i-th queuing 

system at time t, when the network is in state ( )tk ,  for the first time then receive 

services in the j-th QS, nji ,1 , = . 

According to the formula of total probability, we obtain: 
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( ) ( )0
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i i ij j i
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α k t p p φ k I t
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= + −∑ , 1,i n= , (2) 
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= −∑ , , 1,i j n= , (3) 

where ijδ  - the Kronecker delta. We have the equalities 
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i ij
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From (1) and (3) we find  

 
( ) ( ) ( )( ) ( ), ( , ) 1 ( , ) ,i i

ij ij ij i
ψ k t f k t δ f k t β k I t= + − − , , 1,i j n= . (4) 

The probabilities of states of the network under consideration satisfy the differ-

ence-differential equations (DDE) is proved in [4]:  
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where ( )




≤

>
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0,0

0,1

x

x

xu  - is the Heaviside function. 

3. Finding the state probabilities 

Let 1=
i
m , ni ,1= , and suppose that all network system operating in high load 

mode, i.e. 0)( >tk
i

 0>∀t , ni ,1= , then the system (5) takes the form 
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Note, that the number of equations in (6) is countable, when the network is 

open, and of course, when it is closed. 

We denote by ),( tz
n
Ψ , where ),...,,(

21 n
zzzz = , n-dimensional generating func-

tion: 

   1 2

1 2

1 2 1 2

0 0 0

( , ) ... ( , ,.., , ) ... n
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the summation is taken over each 
i
k , from 1 to ∞ , ni ,1= , because the network is 

operating in a high load mode. 

Consider the case where the conditional probabilities ( )tk
i

,ϕ , ( )tk
ij

, ψ , ( )tk
i

,α , 

( )tk
ij

,β  do not depend on the state of the network. The expression for the generat-

ing function (7) can be rewritten as 
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where the function ( )zC
n

 was defined in the proof of Lemma 2 in paper [4], from 

the conditions, that at the initial time the network is able to 0),0,,...,,(
21

>
in
xxxx , 

ni ,1= , 1)0,,...,,(
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=
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Let us introduce the following notations:  

∫=Λ dttt )()( λ , ∫= dtttM
ii
)()( µ , ( ) ( )∫=Φ dtttt
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)(ϕλ , ( ) ( )∫=Υ dtttt
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)(βµ .  (10) 

Using the notation (10), expression (8) can be rewritten as 
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Then from (9) and (11) that 
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This expression can be rewritten as 
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Transform (12) to a form suitable for finding the state probabilities of the network, 

expanding its member exponential in a Maclaurin series. From (7) and (12) that 
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for the generating function (7) has the form: 
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where ∑
=

=

n

i

i
rR

1

. 

4. Finding the average number of messages in the network systems 

It is known that the expectation of the с-th component of a multidimensional 

random variable can be found by differentiating the generating function (13) and 

putting on niz
i

,1,1 == . Therefore, the average number of messages in system 
c
S  

will use the relation: 
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It follows that the average number of applications in the system 
c
S  is deter-

mined by the formula 
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We make in (14) change of variables Rrqlxk
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+−−+= , then 
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Because the network operating system under high load mode 
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5. Example 1 

Let the intensity tt λλ =)( , [ ]1)cos()( += tt
iii

ωµµ , ni ,1= . In this case 

2
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+= t

t
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i

ii

ω

ω
µ

)sin(
)( , 0)0( =

i
M , ni ,1= . Suppose, that 

the probability of adherence message to the queue at time t is given by 
iti etf −

−=1)()( . From (10) follows that  
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, ( ) 00 =Β
ij

, nji ,1, = . Condi-

tional probabilities ( )t
i
ϕ , ( )t

ij
ψ , ( )t

i
α  and ( )t

ij
β , according to (1)-(3), found from 

the relations 
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Solving the systems of linear equations (16) in the package Mathematica, ana-

lytical solutions can be obtained, but they are cumbersome already at 3=n . For 

example, expression for the conditional probability of a time-dependent ( )t
1
 ϕ , at 

3=n has the form: 
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and for the probability ( )t
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Expression (13) takes the form 
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after simplification we obtain: 
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Suppose we have found, for example, the probability of state It is the coefficient 

of 
n
zzz ⋅⋅ ...

21
 in the expansion of ),( tz

n
Ψ  in multiple series (17), so that when the 

degree of 
i
z  must satisfy the relation 1=+−−+ Rrqlx

iiii
, ni ,1= , it follows that 
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We assume that 10=n  and the initial time the network is in a state 

(2,2,2,2,2,2,2,2,2,2,0) . We find the probability of the state (1,1,1,1,1,1,1,1,1,1, )P t , 

using the formula (17). Let the intensities tt λλ =)( , [ ]1)cos()( += tt
iii

ωµµ , tran-

sition probabilities of messages are equal: 10,1,1.0
0

== ip
i

, 9,0,1.0
10

== ip
i

, 

9,1,5.0
0

== ip
i

, 9,1,5.0
10

== ip
i

, 10,0,0 == ip
ii

. In addition, the intensity of 

the service messages in the systems are: 4,1,8.20 == i
i

µ , 9,4,22.10 == i
i

µ , 

5.20
10
=µ . The expression for the time-dependent probability of the state in the 

systems of the network obtained by on a computer using a mathematical calcula-

tion package Mathematica. Figure 1 shows a chart of this probability depending on 

the time t. 

 

 

Fig. 1.  The chart of probability of the state ),1,1,1,1,1,1,1,1,1,1( tP  
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6. Example 2 

We will consider the network described in Example 1. Let tt λλ =)( , 

[ ]1)cos()( += tt
iii

ωµµ , transition probabilities of messages are equal: 

0
0.1, 1,10

i
p i= = , 9,0,1.0
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== ip

i
, 9,1,5.0

0
== ip

i
, 9,1,5.0

10
== ip

i
, 

10,0,0 == ip
ii

, intensity of service messages in the systems are: 4,1,8.20 == i
i

µ , 

9,4,22.10 == i
i

µ , 5.20
10
=µ . The average number of messages in the systems 

network (in the queue and service) at the initial time 0=t  equally ( ) 00 =
i
N , 

10,1=i . Equation (15) to find the average number of messages in the systems net-

work when the network parameters and the conditional probabilities depend on the 

time takes the form: 
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This example is designed on a computer using a mathematical calculation 

package Mathematica. Here are some of the values of the average number of 

applications in the systems of the network (in the queue and service) at time 2.0=t , 

found using the program: 547.0)(
1
=tN , 323.0)(

2
=tN , 429.0)(

3
=tN , 

522.0)(
4
=tN , 742.0)(

7
=tN , 654.0)(

10
=tN . Figure 2 shows a chart of the 

average number of messages in the QS S3 depending on time .t  
 

 
Fig. 2.  The chart of changes of the average number of messages ( )tN
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