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Abstract. The considerations are concerned with mathematicaleling of nonstationary
thermomechanical processes in functionally gradachirlates (FGL). The proposed
modeling procedure is an extension of that basetti®@itolerance averaging technique [13].

Introduction

We summarize below some of studies which have baimty realized and
published by a group of researches in Faculty otiMaical Engineering and
Computer Science, Czestochowa University of Teahmol The object of analysis
is the heat conduction and elastodynamics of twassphmultilayered solids having
macroscopic properties continuously varying indirection normal to the layering.
The above solids will be referred to as the fumlly graded laminates (FGL).
They constitute a special case of structures médienctionally graded materials
(FGM), cf. [9] and the list of references therele main aim of the studies is to
answer how to describe thermomechanical processesring in FGL by means
of PDEs with smooth functional coefficients. Twoiméines of modeling were
proposed. The first one is based on a certain génation of the approach to
the modeling of periodic structures using the p#dosimplicial division and
leading to the system of finite difference equadigi, 8]. The second line of
modeling takes into account some concepts and géguma of the tolerance
averaging technique [13]. This technique was agplie the modeling of
elastodynamics of functionally graded laminatedigda[1], functionally graded
laminated shells [14], functionally graded lamirsatgth interlaminar microcracks
[5, 15]. This procedure makes it possible to aralyso boundary layer
phenomena in elastodynamics of functionally gratedinates [6]. Moreover,
introducing the concept of slowly graded laminateish a weak transversal
inhomogeneity we can decompose tolerance averaguggations into two
asymptotic approximations. This approach was agpliadependently to
elastodynamics [10-12] and heat
conduction problems [2, 3].
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In this contribution the considerations will be dged on the boundary layer
phenomena in elastodynamics of functionally gratbedinates and asymptotic
approximations in elastodynamics and heat conduaifcslowly graded laminates
with a weak transversal inhomogeneity.

DenotationsBy 0x;x,x, we denote Carthesian orthogonal coordinate system

the physical space. L% (0,L), M OR?, be the region in this space occupied
by the laminated solid in the reference configaratin which thex; - axis is
normal to the lamina interfaces. We denete(0,0,]) , x =(x,x,), andt stands

for the time coordinate. The partial differentiatiovith respect to argumensg,
k=1, 2, 3, is denoted by, and time differentiation by the overdot. We intnod

gradient operators® § ;0 0 ;) and C= § @ ,,0). Throughout Sec. 2 the
tensor notation is used with “dot” and “double da® the scalar and the double
scalar products, respectively. In Sec. 3 we apply index notation where
subscriptsa, 8 =1,2. Vectors and vector fields are denoted by smalll Hatce
letters, second-order tensors and tensor fieldsdpital bold face letters and
higher-order tensors and tensor fields by blodietst

For an arbitrary integrable functidrf can also depend onand timet) defined
in (0,L) theaveraging of this function is denoted by

X3+ /2
1 3

(H0e)=1 | 1)y
x3—1/2

To make this paper self consistent we recall insthigsequent section some of the

basic concepts which were presented in [6].

1. Preiminaries

The object of considerations is a two componenttionally graded laminate
consists of large number of thin layers. The th&dsof every layer is assumed to
be the same and will be denoted Iby et us assume that FGL is divided on
layers along its thicknedssuch thal. = ml, mis a natural number and™* << 1.
Thicknesses of lamina in theth layer,n = 1,...m, are denoted by}, I.. A cross

section of FGL solid and its layer are shown inufégl, where,f’, f’ stand for

physical characteristics of lamina materials (médsssities, tensors of elastic
moduli or/fand specific heats per unit area and @nsgtric heat conduction

tensors) in every pair of adjacent laminae, respelgt By v'(J, ' (] we denote
smooth function defined 0|1§O, L] representing distributions of mean volume
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fractions of lamina materialsy’ (%) +v" (%) =1, x,0[0,L]. Settingv =V’
we referv (L] to as the phase distribution function.

Xo Xl

n

Y

Fig. 1. A cross-section of the FGL solid and affnegt of itsn-th layer
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Fig. 2. A diagram of the fluctuation shape functiothen-th layer
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Now, we recall two important notions occurring inlerance averaging
modelling technique. Functiok DCl([O,L]) of argument K can also depend on
x andt as parameters) will be called slowly varying (tethto length, | <<L, and
a tolerances, 0 <& << 1) if functionsld,F and O(sF) are of the same order for
& - 0. If this condition holds also for all derivative$ B then we shall write
FOSV,(1), where ¢ is called a tolerance parameter. For a detailsdugiion
of this concept the reader is referred to [13].

Let g:[0,L] -~ R be a continuous function the diagram of which im a

arbitrary interval[(n—l)l,nl] n=1,..m, is shown in Figure 2. This function

will be referred to as the fluctuation shape fumttiand represents a certain
generalization of the saw-like function, well knovim modelling of periodic
laminates [13].

The basic assumption of the modelling procedurestiat in every FGL mean

volume fractions are slowly varying, i.e. they sBticonditionsv'(JOSV, (1),
v' (JOSV,(1). This procedure will be also based on the formaliasption that

for every slowly varying functionF OSV, (1) terms O(¢F) can be neglected as

small when compared tB. This assumption will be referred to as the talem
approximation.

2. Elastodynamics

2.1. Tolerance averaging model equations

We are to present the tolerance averaging appraacthe modeling of
elastodynamic problems of a linear-elastic funaibn graded laminated the
scheme of which was illustrated in Figure 1. B}, ¢ andt’,t’ we denote
mass densities and tensors of elastic moduli irryepair of adjacent laminae,
respectively.
The subsequent considerations will be restricted problems in which
displacements across the thickness of every lawamabe approximated (with a

certain tolerance&) by linear functions. Let us denote byv(x,xg,t),
X =(x1,x2) m Xg D[O,L] the displacement field at timeRecalling the concept

of the fluctuation shape function and that of thew$y-varying function, we
conclude that the aforementioned restriction carasgumed in the form of the
decomposition

W (X, X5,t) =u(X,X3,t) + g (2) v(X,X5.t) (1)
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whereu, v are slowly varying functions of argumegt
u(x,)0sV, (1), v sv.(1) )
Using the tolerance approximation we also obtain
u (%, Xg,t) =(W)(x,Xg,t)

for every (x,x;)Mx [I/2,1= 1/2 and every time.

Governing equations for basic kinematic unknownsraged displacement
and fluctuation amplitude will be derived from the principle of stationargtin.
To this end the integrand in the action functionill be assumed in the form

L :%<p\&m>—%<DW:CD w)

where the displacement fiel¥ is restricted by conditions (1), (2). Using the
tolerance approximation and recalling thaat(0,0,]) we shall approximatélw

by Ou ¢'(%)& ~ g(x5) v. Similarly we conclude that:
(p)=v'(x%) 0 +V %)/
(C)=V'(%)C +V' (x5) C

We shall also introduce denotations:

(3)

[C]=2V¥(x)(C'-C)e
[c]" =2V3v(x)efC'-C) (4)
{g ElZe[@C'v'( x) +C V(%) )@

After rather lengthy manipulations the Euler-Lagrarequations foL. lead to
the followingequations of motion:

(p)& DS 0
2,2 2 7 (5)
12v?(p)&-127M((C)T W) & 0
andconstitutive equations:
S=(C):Ou [CPv ]
h={g w+[C]" :0u ©
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Equations (5), (6) for the basic kinematic unknownrendv, with coefficients
defined by (3) and (4), together with formulae ({3) represent an averaged
mathematical model of the FGL solid under consiti@na

2.2. Boundary layer equation

Let us decompose the fluctuation amplitvde equations (5), (6) into the sum

v=-{g 7 fc] :ow r 7

wherer is a new kinematical unknown slowly varying ¥3. Neglecting in
equations (5) terms depending on the microstrudamgthl we obtainr =0. That
is whyr is referred to as the intrinsic fluctuation amydieé. At the same time from
(1) and (7) we obtain

W(x,x3,t)=u(x,x3,t)—g(x3){(:}'l[[]L]T :Ou(x %5t g(xs)r(x.xzt)  (8)

where gr represents the intrinsic fluctuation of displacatne

In order to formulate governing equations for fumes u andr we shall use
the notion of homogenized tensor of elastic moduli

L= ) - ]9 " R ]
We also introduce the following differential opemest
Au=(p)&-mL" 0 u),
Dr =1°v?| (p)&-TO((L)T T {d T,
Fu=i"?|(o)(q " gt ] 08 D ()T ({9 kP u))]

Combining equations (5) with formula (7) we obtdie coupled system of
the model equations farandr:

Au=[t]:Or
Dr =Fu

(9)

which is an alternative to model equations (5¢al be shown, [6], that equation

Dr =0 (20)
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describe certain near-initial and near-boundarynpheena strictly related to the
initial and boundary conditions (on the part of bdary intersecting interfaces
between laminae) imposed onThat is why equation (10) will be referred to as
the boundary-layer equation where the term “bowidarrelated both to time and
space.

2.3. Asymptotic approximations

Now we are to show that under certain conditiohs, ¢coupled macro-micro
equations (9) can be decomposed into approximatdehequations describing
independently the macro- and micro-response ofatiménated solid.

Let us denote bj{ Eﬂn an arbitrary but fixed norm in the linear spacealbi-th
order tensors related to spd€e Let us also define

o Ml

<oa] )],

as a transversal inhomogeneity parameter of thén&tes under consideration.
These laminates are said to have a weak transvehsahogeneity provided that
satisfies condition 0 & << 1. This kind of inhomogeneity takes place faminae
reinforced by long high-strength fibres. In thiseathe components of the elastic
moduli tensort.  which are related to th®x; x, - plane are strongly different in
adjacent laminae; the remaining components attaly small jumps across the
lamina interfaces. The above condition holds trorerhany laminated materials
used in civil and mechanical engineering.

The subsequent analysis will be restricted to lateid solids with a weak
transversal inhomogeneity, wheypds treated as a certain small parameter.

Notice that the values c{ﬂ'_ ]T :0r and Fu are of an ordeO(rz7), O(un),

respectively. MoreoverAu and Dr are of the same order asandr, respectively.
Let us assume that the solutions to Eqgs. (9) caeffresented in the form

n=

U=Ug +U,, I =rg+r, (11)

where: uODO(/yo), rODO(/yo), u, 00(n), ry0O(n). Bearing in mind (11)
and applying the limit passage— 0 to Egs. (9), we obtain the following system
of equations fowu,, r:

Au, =0

Dr, =0

(12)
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We shall assume thati,, r, satisfy the boundary/initial conditions which

coincide with those imposed an andr, respectively. From (9), (11), (12) we
conclude thau,, r, have to satisfy the equations:

Auy =[£]":O(rs 1) (13)
Dr, =F (u, +u,)

as well as the corresponding homogeneous boundgial/iconditions. It has to be
emphasized that Eq. (12)epresents the model obtained by the homogenizatio
technique. Equation (12)escribes the phenomena related to the fluctuatidn
boundary and initial displacements. Equations (&) be referred to as the first
order approximation model for slowly graded lamasatvith a weak transversal
inhomogeneity. In the framework of this model tasio kinematic unknowns, r

are approximated by,, r,, respectively. In this case formula (11) yields

u=u, +O(n), r=ry+0(n)

i.e. we deal with an asymptotic approximation obad\ero(r/).
Now we assume that,, r, can be written in the form

u, =u, +o(n), r,=r,+o(n)

where u;, r; are assumed to be linear functions/pfApplying limit passage
n - 0 to equations (13) we obtain the following systerequations foru,, r,:

Au, =[£] i O
Dr, = Fu,

(14)

The above equations are assumed to hold togethieihaimogeneous boundary
and initial conditions. These conditions are assurnee have the same form as
pertinent homogeneous conditions for,, r,, respectively. Equations (11)
together with (13) will be referred to as the satonder approximation model. In
this case we deal with an asymptotic approximemiburdero(r/) given by

u=u, +u, +o(n), r=ry+r,+o(n)

It can be seen that the right-hand sides of Egb. éte known provided that
the boundary/initial value problem for Egs. (12)shleen previously solved.
Summarizing the obtained results we state that hregleations (9) fou andr can
be decomposed to the simplified asymptotic formegily equations (12) and
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(14). It can be seen that the presented modelinggléads to the formulation of
higher-order approximation models.

3. Heat conduction

3.1. Tolerance averaging equations

We are to show that the concept of modeling of fionally graded laminates
with a weak transversal inhomogeneity can be aggleo to the analysis of heat
conduction problem. We will consider a functionagisaded laminated rigid heat

conductor the material geometry of which was déscrin Sec. 1, cf. Figure 1.
By ¢, ¢’ andKj, K; we denote a specific heat (per unit area) andvarmyric
heat conduction tensor in laminae in thelayer with thicknessed,'], I,:,

respectively. Every lamina is assumed to be homeges with x,= const as the
material symmetry plane. Henck;, K; are constant and{,; =K, =0,
Kl =Ky =0,a =12

Let 6=6(x,%,t), x=(%.,% )@ , %0[0,L], stand for a temperature field
at time t 0. Function 6([)] is assumed to be continuous and satisfy in every
lamina the Fourier heat conduction equation

c(% ) &%, %,t) - &, [Kij (xs)aje(x,xs,t)]:o (15)

together with the heat flux continuity condition® @he interfaces between
adjacent laminae.

The line of modeling will be similar to that preses in Sec. 2 for the
elastodynamic problems. We are to consider thes adddgemperature field¢ in
the form

B(x,%,t) =3(x, % ,t) + 9 (X5)e (X, X3 ) (16)

where functionsg and ¢ are slowly varying in argumeni, 0[0,L]. They

constitute the basic unknowns of the modeling aiiltl lve called the averaged
temperature and the temperature fluctuation angaitvespectively.
It can be shown [13], that the governing equations?, ¢ have the form:

(c)zs‘L(Kaﬁ)aaaﬁﬁ —(Ka33) 0,09 —[K s 0g =0

17)
12038102 (K 15 ) 0,0, +{Kog ¢ +[Kyg] 089 =0
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where:

(c)=V'(%)C +V (x;)¢
<Ka/3, =V (%) Kpp +V (%) Ky

[Kag) =203 (x;) (K= K'5)
{Kad =12(Ki/( x) +K'p( x))

Equations (17) represent a tolerance model of that ftonduction in a
functionally graded laminate under consideratidrteey constitute a basis for the
subsequent analysis.

3.2. Asymptotic approximations

The main problem we are going to solve is how toasate model equations
(17) for the averaged temperature and temperatuctuéitions. The subsequent
analysis will be based on the concept of the weaksizersal inhomogeneity. To
explain this concept let us reformulate the toleeamodel equations. We shall

introduce an alternative form of coefficients udefore k =(K3',3 +K'33)/2 and

11 =(Ki; —K's)/ 2. Under assumptioki;; 0K, what is taking place for laminates

with a weak transversal inhomogeneity equations) (@@ be written in the
following form:

(0) (Ko ) 9,0,9 ~kd,09 =4 oy
12(C) 12 (K ) 9, 540 +12key = -4/ 30,9

It has to be emphasized that the parameperfor a weak transversal
inhomogeneity satisfies conditioQ<s= 1 and occurs only on the right-hand
sides of equations (18). Thus, the mutual impadhefaveraged temperatuie
and the temperature fluctuatiogis depends directly on the value of parameter

Due to the presence of the small parameten the resulting tolerance model

equations (18), we shall apply the asymptotic apghoto the analysis of
initial/boundary problems. We shall seek an asympegpproximation of solution

to equations (18) in the form of expansiong =4, +/7191+O(72),

(18)

z//=¢/0+/7¢/1+0(r/2). Substituting these expansions into tolerance model

equations (17) and neglecting terms depending ensthall parameter; we
obtain:
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(c) & ~(Kys 10,059, —kd09 4 =0

12(c) 17 (Ko ) 0,040 +12ki =0

The above equations are assumed to be considegethén with the initial/
boundary conditions coinciding with those imposed:b and (. Equations (19)
represent what will be called the first order asistip approximation of the tole-
rance model equations (18). The first approximatérsolution to the equations
(18) is #=8, and ¢ =¢,. Similarly, substituting the proposed asymptotic
expansions into tolerance model equations (18)n&uggkcting terms depending on
the parameten® we obtain:

() (K 10,09, ~k009 . =4Gv oy

12(Cheh ~17(K 15 ) 0,0, +12kep, = -4 3039,
Thus, the second order approximation is determimyefdrmula $ =4, +¢, and
Y=y, +y¢,, whered,,d,,¢,,¢, are found as solutions to equations (19), (20)
for the certain initial/boundary problem.

(19)

(20)

4. Final remarks

The main aim of the present contribution was toosgpsome basic ideas
related to elastodynamics and heat conduction irctfanally graded laminates
(FGL). The general conclusion is that the toleraageraging technique, so far
applied to periodic structures also constitutesapgr tool of modeling for mate-
rials with deterministic but space varying struetufhe results obtained above has
been partly published and hence the contribution ba treated as general
summary of results rather than a detailed discassfahe problem. It should be
mentioned that the tolerance averaging techniqure bea also applied to more
general form of solids with deterministic and slpwtarying microstructure.
The aforementioned problems are in the courseeopthsent researches.
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