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Abstract. This paper is devoted to the construction of a one-dimensional Feller process
with continuous trajectories, which arises from solving the problem of pasting together two
diffusion processes at a certain point on the real line. It is assumed that the location of this
point depends on time, and that one version of the general Feller-Wentzell-type conjugation
condition is prescribed there. We focus on the case in which the boundary condition involves
only terms corresponding to boundary effects of the diffusion process, such as delay and
partial reflection. To solve the problem, we apply analytical methods based on the classical
potential theory. The resulting process can serve as a one-dimensional mathematical model
of a physical diffusion phenomenon in a medium with a moving, sticky, and semi-permeable
membrane.
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1. Introduction

The aim of this paper is to construct and investigate a two-parameter Feller semi-
-group corresponding to a specific inhomogeneous Markov process on the real line.
This process arises from pasting together, at a certain point on the line, two ordi-
nary diffusion processes defined in corresponding subdomains. It is assumed that the
position of this point is determined by a given function, which, as well as the be-
havior of the process itself, depends on the time variable. At the point that serves as
the common boundary of the subdomains, two conjugation conditions are imposed
for the semigroup. One of these corresponds to the Feller condition for a Markov
process. The other represents a particular case of the general Feller-Wentzell-type
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boundary condition for one-dimensional diffusion processes (see [1]). The case con-
sidered here involves only those terms of the prescribed condition that correspond to
such boundary effects of the diffusion process as partial reflection and delay.

To solve the stated problem, analytical methods are employed. Under this
approach, the question of the existence of the desired semigroup leads to a corre-
sponding conjugation problem for a one-dimensional (in the spatial variable) back-
ward parabolic Kolmogorov equation with discontinuous coefficients, where the
Feller-Wentzell-type conjugation condition involves first-order derivatives in both
variables. The classical solvability of the parabolic conjugation problem in the space
of continuous functions, under certain assumptions on the input data, is established
here by means of the boundary integral equations method, using fundamental
solutions of uniformly parabolic operators and the associated potentials they gen-
erate (see, for example, [2-5]). The resulting Markov process, constructed in this
manner, may serve as a one-dimensional mathematical model of diffusion in media
with moving membranes (see [6, 7]).

It should be noted that a similar problem was previously considered in [8] for
the case where the diffusion processes to be pasted together coincide with parts of
the same Wiener process. In [9], the problem was studied (also in a more general
formulation) under the assumption that the pasting point of the diffusion processes is
a fixed point on the real line. As for the application of other approaches and methods
for constructing one-dimensional models of diffusion in media with different types of
membranes, they are partially reflected in [7,10,11] (see also the references therein).
We also draw attention to potential practical applications of the results obtained.
For example, [12] demonstrates how a particular case of the model developed here
can be used to study problems in high-energy astrophysics, in particular for solv-
ing the so-called non-stationary kinetic equation that describes the acceleration of
charged particles in the vicinity of strong shock waves.

2. Formulation of the conjugation problem for the backward Kolmogorov
equation with discontinuous coefficients

Let Q denote the domain in the space R2 of points (s,x), bounded by the lines
s = 0 and s = T , i.e.,

Q = {(s,x) : 0 < s < T,−∞ < x < ∞}.

We consider two subdomains Q(i)
t ⊂ Q, i = 1,2, defined by

Q(i)
t = {(s,x) : 0 ≤ s < t ≤ T, x ∈ D(i)

s },

where D(1)
s = (−∞,g(s)), D(2)

s = (g(s),∞), s ∈ [0,T ], and g(s) is a given continuous
function. We denote Qt = Q(1)

t ∪Q(2)
t , and Ds = D(1)

s ∪D(2)
s . Let G be the closure of

G, and Cb(R) the space of bounded continuous functions on R with the norm



110 R. Shevchuk, Zh. Tsapovska, S. Kopytko

∥ϕ∥= sup
x∈R

|ϕ(x)|.

We use the Hölder spaces H
k+α

2 ,k+α(Q) and Hk+ α

2 ([0,T ]), α ∈ (0,1), k = 0,1, for
functions defined on Q and [0,T ], respectively, as introduced in [3, Ch. I, §1].

In the strip Q, we consider two second-order parabolic operators with bounded
and continuous coefficients:

∂

∂ s
+L(i)

s ≡ ∂

∂ s
+

1
2

bi(s,x)
∂ 2

∂x2 +ai(s,x)
∂

∂x
, i = 1,2.

We consider the problem of finding a function

u(s,x, t) = ui(s,x, t), (s,x) ∈ Q(i)
t , i = 1,2,

such that in each domain Q(i)
t , i = 1,2, the function ui satisfies the equation

∂ui

∂ s
+L(i)

s ui = 0, (s,x) ∈ Q(i)
t , i = 1,2, (1)

and the following initial condition holds at s = t:

ui
∣∣
s=t = ϕ(x), x ∈ D(i)

t , i = 1,2. (2)

On the boundary x= g(s), the functions u1 and u2 are required to satisfy the following
conjugation conditions:

B1u ≡ u1(s,g(s), t)−u2(s,g(s), t) = 0, 0 ≤ s ≤ t ≤ T (3)

B2u ≡ σ(s)
∂u
∂ s

(s,g(s), t)−q1(s)
∂u1

∂x
(s,g(s), t)

+q2(s)
∂u2

∂x
(s,g(s), t) = 0, 0 ≤ s < t ≤ T.

(4)

Here, ϕ, σ , q1 and q2 are given continuous functions. In addition, we assume that
ϕ ∈Cb(R), and the coefficients of operator B2 satisfy the conditions:

σ(s)> 0, qi(s)≥ 0, i = 1,2, s ∈ [0,T ]. (5)

The derivative
∂u
∂ s

(s,g(s), t) in (4) is understood as the limit of the function

∂u
∂ s

(s,x, t) =
∂ui

∂ s
(s,x, t), (s,x) ∈ Q(i)

t , i = 1,2,

as (s,x)→ (s,g(s)) from within the domain Q(i)
t . It is assumed that

∂u1

∂ s
(s,g(s), t) =

∂u2

∂ s
(s,g(s), t).
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The derivatives ∂ui/∂x(s,g(s), t), i = 1,2, in (4) are interpreted analogously, but
without assuming their continuity at x = g(s). We also make use of the derivative

∂

∂ s
[u(s,g(s), t)] =

∂

∂ s
[ui(s,g(s), t)], i = 1,2,

which, under the assumption that the function g(s) is differentiable, is related to

∂u
∂ s

(s,g(s), t) =
∂ui

∂ s
(s,g(s), t), i = 1,2,

via the formula

∂

∂ s
[ui(s,g(s), t)] =

∂ui

∂ s
(s,g(s), t)+

∂ui

∂x
(s,x, t)

∣∣∣∣
x=g(s)

·g′(s), i = 1,2. (6)

Recall (see [1, 6, 7]) that the conjugation problem (1)-(4) represents, in terms of
semigroups, the so-called problem of pasting together two given diffusion processes
on the real line, with a boundary condition additionally prescribed at the point of
pasting together these processes, which is a particular case of the general Feller-
-Wentzell-type boundary condition for one-dimensional diffusion processes. As is
well known, this condition describes all possible extensions of a diffusion process
after it reaches the boundary of the domain. If we assume that, based on the solution
u(s,x, t) of the problem (1)-(4), one can define a two-parameter semigroup of oper-
ators Tst , 0 ≤ s ≤ t ≤ T , acting on the space Cb(R) and yielding a certain Markov
process on R (see Theorem 2), then the fact that the function u(s,x, t) = Tstϕ(x)
satisfies equation (1) implies that the parts of this process inside the domains D(i)

s

coincide with the diffusion processes defined there by generating differential oper-
ators L(i)

s , i = 1,2. Moreover, the initial condition (2) corresponds to the equality
Tss = I, where I denotes the identity operator. Next, the conjugation condition (3)
reflects the Feller property of the resulting Markov process, while the relation (4)
represents the aforementioned version of the general Feller-Wentzell-type conjuga-
tion condition. In our setting, this condition involves only terms that characterize
specific properties of the diffusion processes at the point where they are joined –
namely, delay (represented in (4) by the derivative of u with respect to s, multiplied
by the coefficient σ ) and partial reflection (represented by the one-sided derivatives
of u with respect to x, with coefficients q1 and q2).

We further assume that the following conditions hold for the coefficients of the
operators L(i)

s , i = 1,2, and B2, as well as for the function g:

I. There exist constants b and B such that for all (s,x) ∈ Q,

b ≤ bi(s,x)≤ B, i = 1,2.

II. The functions ai(s,x) and bi(s,x), i= 1,2, belong to the Hölder space H
α

2 ,α(Q)

and H
1+α

2 ,1+α(Q), respectively.
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III. The functions σ(s) and qi(s), i = 1,2, belong to the Hölder space H
α

2 ([0,T ])
and satisfy conditions (5).

IV. The function g(s) belongs to the Hölder class H1+ α

2 ([0,T ]).

Let Gi(s,x, t,y), 0 ≤ s < t ≤ T, x,y ∈ R, i = 1,2, be the fundamental solution of
the operator ∂/∂ s+L(i)

s (see [3, Ch. IV, §11], [7, Eq. (1.8)]):

Gi(s,x, t,y) = Zi0(s,x, t,y)+Zi1(s,x, t,y), i = 1,2,

where

Zi0(s,x, t,y) = [2πbi(t,y)(t − s)]−
1
2 · exp

{
− (y− x)2

2bi(t,y)(t − s)

}
,

and Zi1 is an integral term that admits a weaker singularity than Zi0 as s→ t. The func-
tions Gi and Zi1 satisfy the following estimates for 0 ≤ s < t ≤ T , x,y ∈ R, i = 1,2:

|Dr
sD

p
x Gi(s,x, t,y)| ≤C(t − s)−

1+2r+p
2 · exp

{
−c

(y− x)2

t − s

}
, (7)

|Dr
sD

p
x Zi1(s,x, t,y)| ≤C(t − s)−

1+2r+p−α

2 · exp
{
−c

(y− x)2

t − s

}
,

where C and c are positive constants, and r, p are non-negative integers such that
2r+ p ≤ 2. Here, Dr

s and Dp
x denote partial derivatives of order r and p with respect

to s and x, respectively.
Using the fundamental solution Gi(s,x, t,y), i = 1,2, along with given functions

ϕ(x), x∈R, and g(s), s∈ [0,T ], and a density function Vi(s, t), 0≤ s< t ≤ T, i= 1,2,
we define the following integrals:

ui0(s,x, t) =
∫
R

Gi(s,x, t,y)ϕ(y)dy, i = 1,2, (8)

ui1(s,x, t) =
t∫

s

Gi(s,x,τ,g(τ))Vi(τ, t)dτ, i = 1,2. (9)

The function ui0 is referred to as the Poisson potential with kernel Gi and density ϕ ,
while ui1 is called the parabolic simple-layer potential with kernel Gi and density Vi.
We now recall several known properties of these functions, assuming that ϕ ∈Cb(R),
g ∈ H1+ α

2 ([0,T ]), and the density Vi is continuous in τ ∈ [0, t) and may admit a weak
singularity as τ → t, with exponent µ ≥ −1/2, as follows (see [2, Ch. XXII, §8],
[3, Ch. IV, §14, 15], [5, Sec. 2], [6, Ch. II, §3]):

1) The potential ui0, as a function of (s,x), is a solution of the Cauchy problem
for equation (1) in the domain (s,x) ∈ [0, t)×R, with the initial condition (2)
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for x ∈ R. Moreover, it satisfies the estimate (for 0 ≤ s < t ≤ T, x ∈ R, and
2r+ p ≤ 2)

|Dr
sD

p
x ui0(s,x, t)| ≤C∥ϕ∥(t − s)−

2r+p
2 .

2) The potential ui1, as a function of (s,x), is bounded and continuous for 0 ≤ s <
t ≤ T, x ∈ R. It satisfies equation (1) in the domain (s,x) ∈ [0, t)× (R \ g(s))
and vanishes at s = t, x ∈ R.

3) The derivative of the function ui1 with respect to x (the so-called conormal
derivative) satisfies the jump relation:

lim
x→g(s)±0

∂ui1

∂x
(s,x, t) =∓ Vi(s, t)

bi(s,g(s))
+

t∫
s

∂Gi

∂x
(s,g(s),τ,g(τ))Vi(τ, t)dτ. (10)

The existence of the integral on the right-hand side of (10) follows from the
inequality ∣∣∣∣∂Gi

∂x
(s,g(s),τ,g(τ))

∣∣∣∣≤C(τ − s)−1+ α

2 , i = 1,2.

3. Solution of the parabolic conjugation problem

In this section, we prove the following existence and uniqueness theorem:

Theorem 1 Suppose that assumptions I-IV hold and that ϕ ∈ Cb(R). Then there
exists a unique solution of the problem (1)-(4), continuous in Qt , for which the fol-
lowing estimate holds:

|u(s,x, t)| ≤C∥ϕ∥, (s,x) ∈ Qt , (11)

where C is a positive constant. 2

PROOF We first prove the existence of a classical solution u(s,x, t)= ui(s,x, t), (s,x)∈
Q(i)

t , i = 1,2, of the problem (1)-(4). The functions ui(s,x, t) are sought in the form

ui(s,x, t) = ui0(s,x, t)+ui1(s,x, t), (s,x) ∈ Q(i)
t , i = 1,2, (12)

where ui0 and ui1 are defined by formulas (8) and (9), respectively. Here, ϕ is the
function from the initial condition (2), and Vi, i = 1,2, are unknown functions to be
determined. Assume that the functions Vi, i = 1,2, satisfy the conditions under which
properties 2) and 3) hold for ui1, i = 1,2. Together with property 1), this implies that
to determine Vi, i = 1,2, it remains only to apply the conjugation conditions (3) and
(4), which any solution of the problem (1)-(4) must satisfy. To this end, we intro-
duce the function υ(s, t) = u(s,g(s), t) = ui(s,g(s), t), i = 1,2. Using the conjugation
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condition (4), together with formulas (6), (8), (9) and (10), we obtain the following

relation for
∂υ

∂ s
:

∂υ

∂ s
= Φ0(s, t), s ∈ [0, t), (13)

where

Φ0(s, t) =
2

∑
j=1

γ j(s)
∂u j0

∂x
(s,g(s), t)+

2

∑
j=1

q j(s)
σ(s)b j(s,g(s))

Vj(s, t)

+
2

∑
j=1

γ j(s)
t∫

s

∂G j

∂x
(s,g(s),τ,g(τ))Vj(τ, t)dτ,

γ j(s) =
1
2

g′(s)+(−1) j−1 q j(s)
σ(s)

, j = 1,2.

We treat equation (13) as an autonomous ordinary differential equation for the func-
tion υ(s, t), which satisfies the initial condition

lim
s↑t

υ(s, t) = ϕ(g(t))

Solving equation (13) with the initial condition above, we obtain

υ(s, t) = ϕ(g(t))−
t∫

s

Φ0(λ , t)dλ . (14)

Thus, we obtain three different expressions for the function υ(s, t) = u(s,g(s), t):
the representation (14), and two expressions from (12), in which one must substi-
tute x = g(s) and take into account condition (3). Equating the right-hand sides of
the expressions for υ(s, t) and u1(s,g(s), t), and then for υ(s, t) and u2(s,g(s), t),
we obtain the following system of integral equations for the unknown functions Vi,
i = 1,2:

t∫
s

Gi(s,g(s),τ,g(τ))Vi(τ, t)dτ +
2

∑
j=1

t∫
s

K j(s,τ)Vj(τ, t)dτ = Φi(s, t), (15)

where 0 ≤ s < t ≤ T, i = 1,2, and

K j(s,τ) =
τ∫

s

γ j(λ )
∂G j

∂x
(λ ,g(λ ),τ,g(τ))dλ +

q j(τ)

σ(τ)b j(τ,g(τ))
, j = 1,2,

Φi(s,τ) = ϕ(g(t))−ui0(s,g(s), t)−
2

∑
j=1

t∫
s

γ j(λ )
∂u j0

∂x
(λ ,g(λ ), t)dλ , i = 1,2.
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The system (15) consists of two Volterra integral equations of the first kind.
We now transform it into a system of Volterra integral equations of the second kind.
To this end, we introduce the integro-differential operator E , defined by

E (s, t) f =

√
2
π

∂

∂ s

t∫
s

(ρ − s)−
1
2 f (ρ, t)dρ, 0 ≤ s < t ≤ T.

Applying the operator E to both sides of each equation in (15), we find that
this system of equations for Vi, i = 1,2, can be rewritten as the following system
of Volterra integral equations of the second kind:

Vi(s, t) = Ψi(s, t)+
2

∑
j=1

t∫
s

Ki j(s,τ)Vj(τ, t)dτ, i = 1,2, (16)

where

Ψi(s, t) =−
√

bi(s,g(s)) ·E (s, t)Φi, i = 1,2,

E (s, t)Φi =
1√
2π

t∫
s

(ρ − s)−
3
2 [Φi(ρ, t)−Φi(s, t)]dρ

−
√

2
π
(t − s)−

1
2 Φi(s, t), i = 1,2,

Kii(s,τ) =

√
2bi(s,g(s))

π

∂

∂ s

t∫
s

(ρ − s)−
1
2

([
Zi0(ρ,g(ρ),τ,g(τ))

−Zi0(ρ,g(τ),τ,g(τ))
]
+Zi1(ρ,g(ρ),τ,g(τ))+Ki(ρ,τ)

)
dρ, i = 1,2,

Ki j(s,τ) =

√
2bi(s,g(s))

π

∂

∂ s

t∫
s

(ρ − s)−
1
2 K j(ρ,τ)dρ, i = 1,2, j = 1,2, i ̸= j.

In addition, the following estimates hold for the functions Ψi and the kernels Ki j,
i, j = 1,2,

|Ψi(s, t)| ≤C∥ϕ∥(t − s)−
1
2 , 0 ≤ s < t ≤ T, i = 1,2, (17)

|Ki j(s,τ)| ≤C(τ − s)−1+ α

2 , 0 ≤ s < t ≤ T, i = 1,2, j = 1,2. (18)

Estimates (17) and (18) can be established using the same method as that used to
derive inequalities (2.8) and (2.10) in [7].

The inequalities (17) and (18) ensure that the ordinary method of successive
approximations can be applied to the system of integral equations (16) (see, e.g.,
[3, Ch. IV, §11]). As a result, we conclude that the system of equations (16) has
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a unique solution in the class of continuous functions for 0 ≤ s < t ≤ T , which
admits the representation

Vi(s, t) = Ψi(s, t)+
2

∑
i, j=1

t∫
s

Ri j(s,τ)Ψ j(τ, t)dτ, i = 1,2, (19)

where the resolvent Ri j(s,τ) has a weak singularity of the form (18), and the same
estimate (17) holds for the functions Vi as for Ψi, i = 1,2.

From estimates (7) (with r = p = 0) and (17) for Vi, i = 1,2, it follows that the
integrals in the representation (12) exist, and that the functions ui satisfy equation
(1), the initial condition (2), and the inequality (11). We also verify that the derivative
of the resulting function u with respect to s remains continuous across the boundary
x = g(s). This completes the proof of the existence of a classical solution of the
problem (1)-(4). As for the uniqueness of this solution in the class of continuous
functions, it follows from the maximum principle for parabolic equations in the case
of the first boundary value problem (Cf. the proof of Theorem 2.2 in [7]). Theorem 1
is proved. ■

4. Construction of a diffusion process with discontinuous local
characteristics and a moving, sticky, and semi-permeable membrane

Using the solution of the parabolic conjugation problem (1)-(4), we define a two-
-parameter family of linear operators Tst , 0 ≤ s ≤ t ≤ T , acting on Cb(R) by the
formula

Tstϕ(x) = T (i0)
st ϕ(x)+T (i1)

st ϕ(x), 0 ≤ s < t ≤ T, x ∈ Dis, i = 1,2, (20)

where

T (i0)
st ϕ(x) =

∫
R

Gi(s,x, t,y)ϕ(y)dy,

T (i1)
st ϕ(x) =

t∫
s

Gi(s,x,τ,g(τ))Vi(τ, t,ϕ)dτ,

and the densities Vi, i = 1,2, represent the solution of the form (19) of the system of
equations (16), to which the original problem (1)-(4) is reduced. Moreover, Ttt = I,
where I is the identity operator, and the estimate

|Tstϕ(x)| ≤C∥ϕ∥

holds for all 0 ≤ s ≤ t ≤ T, x ∈ R.
The availability of the integral representation for the family of operators Tst , 0 ≤

s ≤ t ≤ T , acting on the space Cb(R), allows one to readily verify that they possess
the following properties:
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a) If ϕn ∈Cb(R), n = 1,2, . . . , sup
n
∥ϕn∥< ∞ and lim

n→∞
ϕn(x) = ϕ(x) for all x ∈ R,

where ϕ ∈Cb(R), then lim
n→∞

Tstϕn(x) = Tstϕ(x) for all (s,x) ∈ Qt .

b) Tstϕ(x)≥ 0 for all (s,x) ∈ Qt if ϕ ∈Cb(R) and ϕ(x)≥ 0 for all x ∈ R.

c) The operators Tst are contractive, i.e.,

∥Tstϕ∥ ≤ ∥ϕ∥

for any ϕ ∈Cb(R).

d) For all 0 ≤ s ≤ τ ≤ t ≤ T,

Tst = TsτTτt .

The proofs of properties a) – d), with obvious modifications, follow along the
same lines as the corresponding ones for the Markov process constructed in [7,
Sec. 3].

From properties a) – d), it follows that the operators Tst possess the semigroup
property and generate a certain inhomogeneous Markov process on R (see, e.g.,
[6, Ch. I], [13, Ch. 2, §1]). We denote its transition probability by P(s,x, t,dy),
so that

Tstϕ(x) =
∫
R

ϕ(y)P(s,x, t,dy), 0 ≤ s < t ≤ T, x ∈ R, ϕ ∈Cb(R).

We also emphasize an additional property of the constructed Markov process,
based on the integral representation of Tstϕ(x). Through direct computation, we show
that the transition probability P(s,x, t,dy) satisfies the following conditions:

i) sup
x∈R

∫
R

|y− x|4P(s,x, t,dy)≤C(t − s)2, 0 ≤ s < t ≤ T,

ii) lim
∆s↓0

1
∆s

∫
R

(y−x)P(s,x,s+∆s,dy)=

ai(s,x), s ∈ [0,T ], x ∈ D(i)
s , i = 1,2,

q2(s)−q1(s)
σ(s)

, s ∈ [0,T ], x = g(s),

iii) lim
∆s↓0

1
∆s

∫
R

(y−x)2P(s,x,s+∆s,dy)=

{
bi(s,x), s ∈ [0,T ], x ∈ D(i)

s , i = 1,2,
0, s ∈ [0,T ], x = g(s).

Condition i) implies that the trajectories of the constructed Markov process are
continuous (see [4, Ch. V, §4], [6, Ch. I, §2]), while the existence of the limits in ii)
and iii) indicates that this process can be interpreted as an ordinary diffusion process,
albeit with discontinuous diffusion characteristics: the drift coefficient a(s,x) and the
diffusion coefficient b(s,x), given by the right-hand sides of formulas in ii) and iii),
respectively.
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Thus, we have proved the following theorem:

Theorem 2 Let the assumptions of Theorem 1 hold. Then the two-parameter Feller
semigroup Tst , 0 ≤ s ≤ t ≤ T , defined by formulas (19) and (20), describes an inho-
mogeneous Markov process on R whose transition probability P(s,x, t,dy) satisfies
conditions i) – iii). 2

Finally, we note that the continuous Markov process constructed in Theorems 1
and 2 can serve as a one-dimensional mathematical model of a physical diffusion
phenomenon with a membrane located at the point of pasting together the original
diffusion processes. Since the membrane’s position on the real line is variable, and
the constructed process possesses the properties of delay and partial reflection at the
membrane, we refer to it as a moving, sticky, and semi-permeable membrane.

5. Conclusions

This paper presents the application of heat potential theory methods to the con-
struction of a one-dimensional mathematical model of a physical diffusion phenom-
enon in a medium with a moving, sticky, and semi-permeable membrane. The model
is derived by analytically solving the problem of pasting together two diffusion pro-
cesses on the real line, with a version of the general Feller-Wentzell-type conjugation
condition prescribed at their pasting point. It is assumed that the location of this point
depends on time, and that the conjugation condition is local and involves only terms
corresponding to such extensions of the diffusion process at the boundary point as
delay and partial reflection.

The main steps in solving the problem under consideration are as follows:

• establishing, by the boundary integral equations method, the classical solvabil-
ity of the conjugation problem for the backward Kolmogorov equation with
discontinuous coefficients, to which the original problem is reduced;

• proving that the two-parameter Feller semigroup defined via the solution of
this problem describes a certain Markov process on the real line;

• establishing several additional properties of the resulting process.
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