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Abstract. Pairwise comparison-based inference for deriving priority weights has a long-

standing history. However, its widespread application in multiple-criteria decision analysis 

began in the early 1980s with the introduction of the Analytic Hierarchy Process (AHP),  

a decision-making framework proposed by T. Saaty. A core tenet of the AHP is the recipro- 

city property, which is widely accepted and often treated as fundamental in constructing  

pairwise comparison matrices. Nonetheless, only a few studies have questioned whether this 

artificially imposed reciprocity might, in fact, degrade the quality of prioritization outcomes. 

This paper critically examines the validity of the reciprocity assumption and its impact on 

the accuracy of priority weight estimation. Through extensive computer simulations involv-

ing various prioritization-quality metrics, we find that enforcing reciprocity in pairwise com-

parisons often leads to significantly poorer prioritization outcomes. These results cast serious 

doubt on the usefulness of the reciprocity axiom in practical applications. We also discuss 

the methodological implications of relaxing this assumption and propose modified AHP 

methods that support more flexible and potentially more accurate judgment structures in  

the AHP practice. 
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1. Introduction 

Pairwise-comparison-based inference about objects’ priority weights has a long 

history; some authors suggest that it perhaps started in the Stone Age, and certainly 

was known and applied in the XVII century, see e.g. [1]. Although it is a long-stand-

ing idea, the rapid growth of its modern applications in multiple-criteria decision 

analysis began only in the early 1980s, with the emergence of the Analytic Hierarchy 

Process (AHP) – a decision making methodology proposed by T. Saaty in his seminal 

work [2]. Since then, the AHP has become one of the most widely used approaches 

to prioritization [3]. Its range of applications is vast, but it is not the aim of this paper 
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to review studies describing real-world decision making problems solved using AHP. 

However, to illustrate the breadth of its applicability, we mention just a few recent 

examples from entirely different fields where the methodology has been applied: 

outsourcing and engineering [4], transportation [5], consumer preference studies [6], 

the ranking of industrial technologies [7], and water management [8]. 

Almost all theoretical and application-oriented papers that adopt the AHP empha- 

size that the reciprocity of paired judgements is a fundamental requirement. Perhaps 

all of Saaty’s papers emphasize the importance of the reciprocity requirement. It is 

even called an axiom of the AHP. For example, in Satty’s paper [9], at its very be-

ginning, it reads that Axiom No. 1 of the AHP is: “… the reciprocal property that is 

basic in making paired comparisons …”. In his other, more recent work [10], it also 

reads “… thus, for example, if one stone is judged to be five times heavier than 

another, then the other is automatically one fifth as heavy as the first because it par-

ticipated in making the first judgment. The comparison matrices that we consider are 

formed by making paired reciprocal comparisons.” Yet another important work, the 

Encyclopedia of Information Science and Technology [11], which also addresses 

multiple-criteria decision making in its section on the AHP, contains a similar pas-

sage “… To carry out these comparisons matched, AHP is supported in three axioms: 

Reciprocity, Homogeneity, and Synthesis”, and further on in the text: “The compar-

ative relation of two elements or criteria between itself, opposite to his criterion 

mother must be reciprocal. That is to say, if A is � times more important than B, then B must be 1/� times more important than A.” The reciprocity axiom is treated as  

an obvious one also in papers [12-14], and the book [15], and a plethora of other 

pairwise-comparisons-related works published during the years. It proves that the 

reciprocity axiom has already become a scientific paradigm, i.e., as stated by Thomas 

Kuhn: a principle that is “taken for granted by the scientific community in a given 

field” [16].  

Is the reciprocal property of the comparison matrices so natural and obvious  

that the paradigm cannot be questioned? 

Before embarking on a deeper exploration of this issue, and to clarify our point, 

let us take a closer look at one of the statements mentioned earlier: 

“If A is � times more important than B, then B must be 1/� times more  

important than A.” 

At first glance, this appears to be a reasonable claim. However, a more thorough 

analysis of the context in which it is applied raises doubts about its validity. It is 

important to recognize that this property, in the context of the AHP methodology, 

does not describe the actual nature of the relationship between elements. Instead,  

it is a condition imposed on the elements of the comparison matrix, which, by defi-

nition, is constructed based on human judgments. 

Below, we offer several remarks that call into question the self-evidence of  

the reciprocity requirement. 
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Remark 1 Let us note that, in practice, the decision maker (DM) must express their 

judgments using numerical values from a predefined, finite set known as the judg-

ment scale. The most widely used is Saaty’s scale (SS), which consists of the integers 

1, 2, ..., 9 and their reciprocals.  

Now, consider a thought experiment: suppose the true value of � is 1.45 (such 

values are entirely plausible – priority weights in many AHP studies are estimated 

to several decimal places). Even a perfectly rational DM must select a value from 

the scale, and it is reasonable to choose the closest available option, which is 1.  

The reciprocal of 1 is also 1. However, the true reciprocal of 1.45 is approximately 

0.69, and the closest value on the scale to this would be 1/2. 

Consequently, a perfectly rational decision maker striving to approximate the true 

priority ratios may inadvertently violate the reciprocity property. Conversely, strictly 

enforcing reciprocity can lead to the loss of valuable information – potentially  

degrading the accuracy of the final priority estimates. Similar dilemmas may arise  

in many practical situations. 

Is this trade-off significant for real-world decision making? Do the distortions 

introduced by enforcing reciprocity materially affect the resulting prioritization?  

A numerical example illustrating such a case is presented in Section 3.2, where these 

questions are additionally examined more thoroughly through simulation experi-

ments. 

Remark 2 The previously considered statement is a conditional sentence that begins 

with the clause: “If A is � times more important than B.” However, in practice,  

the decision maker does not know this with certainty – they merely estimate that  

“A is � times more important than B.” In reality, such judgments are often imprecise 

or prone to error. Given this uncertainty, we should be even less confident in the 

assertion that “B must be 1/� times more important than A.” Therefore, requiring 

the DM to provide a separate judgment approximating 1/� could yield additional, 

valuable information that should not be disregarded.  

This expectation is also supported by statistical estimation theory. It is well 

known that even if a value � is a good estimate of some quantity α, it does not follow 

that 1/� is an equally good estimate of 1/�. 

Consider another example: suppose we know that one object (say, A) is exactly 

three times longer than another object (say, B), but we do not know their actual 

lengths. Would it be reasonable to estimate the length of only one of them in order 

to infer both? According to estimation theory, it is not. Separate measurements  

provide better estimates, and the same logic applies to pairwise judgments in AHP. 

Remark 3 In many – perhaps most – real-world applications of the AHP, decision 

makers are not asked to express their judgments about the relative importance of 

alternatives using numerical values, but rather in linguistic terms (see, e.g., [2, 17]). 

A predefined mapping is then used to assign numerical values from a selected scale 

to these verbal expressions. This approach is especially common when evaluating 
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quality-related criteria – for instance, in car comparisons involving attributes such as 

suspension quality, vehicle safety, control equipment, or environmental friendliness. 

In such contexts, the DM does not typically state, “� is 7 times more important 

than 	”, but instead provides a verbal judgment such as, “� is very strongly more 

important than 	”. In [2], for example, the term “very strong importance” is mapped 

to the numerical value 7. 

Now, let us revisit the issue of the presumed obviousness of the reciprocity prin-

ciple. What is the reciprocal of “very strong importance”? Or of any other linguistic 

term presented to the DM as a possible expression of their judgment? Would it  

not, in some cases, be more appropriate to ask the DM to also provide a linguistic  

approximation of the inverse relation? After all, the more insight we gain into  

the DM’s perception of the relative importance of the elements being compared,  

the more likely it is that they will find the resulting priority vector satisfactory. 

In our view, the above considerations make the reciprocity axiom appear far less 

natural and unquestionable than it might initially seem. However, to avoid misun-

derstanding, we want to emphasize that we are not arguing against the theoretical 

principle of reciprocity of the underlying true ratios. Rather, our focus is on scruti-

nizing the assumption that if a DM estimates – or merely senses – that a given prior-

ity ratio is, say, �, then it is automatically valid to consider 1/� as the best estimate 

of the inverse ratio. This assumption is a core component of the reciprocity paradigm 

as implemented in standard AHP procedures, yet we believe its validity is far from 

self-evident.  

Indeed, over recent years, there have been several authors who claimed that  

humans in real-world problems provide paired judgments that are usually non-recip-

rocal, and suggested that the artificially imposed reciprocity may lead to loss of in-

formation about the decision maker’s real preferences [1, 18-21]. Our paper focuses 

on a deeper numerical study of that issue. We propose a simulation framework to 

examine the impact of the artificially forced reciprocity on the quality of final prior-

ity-weight estimates. In our experiments, three different prioritization-quality char-

acteristics are taken into account. It turns out that the simulations prove that the 

forced reciprocity of paired judgments leads to significantly worse estimation results 

for all quality criteria. Then, we discuss modifications of the usual AHP approach, 

which are necessary because of the repudiation of the reciprocity paradigm.  

The remainder of the paper is organized as follows. Section 2 presents the neces-

sary formal definitions. Section 3 describes the adopted prioritization-quality criteria 

and the simulation framework in more detail. Section 4 reports the simulation results 

and provides a discussion of the findings. In Section 5, we propose modifications to 

existing inconsistency indices and evaluate their performance through computer sim- 

ulations. Additionally, we introduce a simple yet statistically well-justified accept- 

ance procedure for pairwise comparison matrices (PCMs). Finally, in the Final  

remarks and recommendations section, we reflect on the issue of inconsistency from 

the broader perspective of the objectives of prioritization methods, and we highlight 

our most important conclusions. 
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2. Basic notions and facts 

A vector 
 = (�
, … , ��)�, which consists of numbers that reflect the intensity of 

importance of each alternative concerning a given criterion, is called a priority vector 

(PV), while its components are called priority weights (or briefly: the priorities).  

The PV is assumed to possess only positive components and is usually normalized to 

unity. The result of comparisons of each pair of decision alternatives is the so-called 

pairwise comparison matrix (PCM), � = [���]��� with ��� being the DM’s judg-

ments about the ratios ��/��.  

Obeying the reciprocity condition, in the AHP the data for the PCM is collected 

only for the elements in the upper triangle of the matrix �, while the rest of its ele-

ments are set as the inverses of the corresponding symmetric elements in the upper 

triangle i.e. ��� = 1 ��� ⁄  for all � > �. Any PCM with elements that satisfy such  

a condition is said to be a reciprocal one.  

Any three elements (���, ���, ���) ∀�, �, � = 1,…, �, of a PCM are called a triad 

[30]. 

A PCM is called a consistent one if it is reciprocal and for all its triads, the fol-

lowing condition holds:  ������ = ��� , ∀�, �, � =  1, … , � 

A PCM that contains the DM’s judgments about the priority ratios forms a basis 

for the priority weights estimation, i.e. for prioritization. In the AHP literature, two 

prioritization methods can be distinguished as the most widely applied in practice. 

One of them is the geometric mean method (GM). The estimated priority vector 

(EPV) in the GM method can be obtained by the following formula: 

!� = "# ���
�

�$
 %

� & "# ���

�
�$
 %


��
�$
'  

Another commonly used prioritization method is based on some specific results 

from the spectral theory. This one is called the right eigenvector method (REV) [2]. 

The description of the REV method can be found in the vast literature, including 

university textbooks devoted to multiple-criteria decision making. Very briefly, the 

REV method suggests taking as the EPV, the normalized eigenvector associated with 

the principal eigenvalue of the PCM, i.e., a normalized vector w that satisfies the 

equation: �( = λ*+,( 

where λ*+, is the principal eigenvalue of the PCM. 

That definition makes sense because the famous Perron’s theorem assures the 

uniqueness of such a normalized w and the positivity of all its components. 
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Over the last few decades, many papers have been devoted to the comparison of 

the prioritization methods’ performance. In those studies, it is found that the results 

provided by methods GM and REV differ very little, and it is not known which one 

is better – both have their supporters and rarely serious opponents, see e.g. [22, 23]. 

Because it is easier to use and numerically more precise, the GM method is adopted 

in these studies. 

During the analysis of the typical AHP problem, the prioritization methods are 

used several times (at least for the criteria and for the decision alternatives for each 

criterion separately). Let �, � > 2 be the number of decision alternatives, and �;  � > 2, the number of criteria. 

Let us denote by PCM(Cr) the PCM that was provided by the decision-maker for 

the criteria, and by the symbol PCM(�) the PCMs obtained for the decision alterna-

tives for the �-th criterion. The PCM(Cr) has order �, and each PCM(�) has order �. 

Let 
- and (- be, respectively, the true PV for criteria and the EPV for the criteria 

that was obtained based on PCM(Cr). Let 
� and (� be also the true PV and its EPV 

for the alternatives in regard to the �-th criterion. The final true PV – say 
 – is given 

by: 
 = & ��-
.�
�$
  (1) 

Analogously, the estimated final PV – say ( – is defined as 

( = & !�-(.�
�$
  (2) 

Now let us focus on the issue of DM’s judgments contained in the PCM. As we 

already emphasized, conventionally, the DM’s opinions about priority ratios are  

expressed in linguistic terms, and then the terms are mapped into numbers belonging 

to a given, predefined scale. As a consequence of such a technique, the elements of 

PCM are hardly believed to give priority ratios precisely. Moreover, other possible 

judgment errors result from the human brain’s natural limitation. Accordingly, the 

final EPV is also erroneous. The principal goal of any improvement of the prioriti-

zation process is to make those estimation errors as small as possible. If the conse-

quences of estimation errors differ, then this process should also take into account 

those errors’ repercussions. Three characteristics of the prioritization-quality that are 

used in our simulations are defined in the next section. 

3. Description of simulation experiments 

In this section, we present the simulation algorithm and the overall framework 

used to investigate the relationship between errors in priority ratio judgments, 

measures of judgment inconsistency, and errors in the estimation of the priority  

vector. We begin by introducing the prioritization quality characteristics adopted  

in our analysis. 



82 A.Z. Grzybowski 

3.1. Prioritization-quality-measures 

There are two main purposes of the real-world applications of the AHP. The first 

and still very common goal is to point out the best alternative (the best location for 

new industrial investment, the best production technology for specific goods, etc.). 

In such a case, the prioritization errors are not very meaningful as long as the final 

ranking is correct. Another purpose is to allocate limited resources between several 

entities (e.g. to allocate constrained financial resources between different scientific 

projects). In the second case, the parts of resources granted to particular entities are 

proportional to their priority weights. In such problems, the accuracy of the estimates 

of the weights is essential. Taking those possible goals into account in our studies, 

we adopt three prioritization-quality characteristics (PQCs) defined below. 

Let 
 = (�
, … , ��) be the true PV whilst the ( = (!
, … , !�) its EPV. In various 

papers (e.g. [22, 24]) it was proposed to measure the PV estimation errors (PVEE) 

as the average absolute (AE) and relative (RE) errors. The errors are defined as  

follows: 

average absolute error: AE(
, () = 1� &|�� − !�|2
�$
  (3)

average relative error: RE(
, () = 1� & |�� − !�|��
2

�$
  (4)

In [25], it was proposed to take into account also the chances for “significantly 

incorrect” final EPV (understood as the relative frequencies of such events). They 

consider the final EPV ( to be “significantly incorrect” if the truly best alternative 

(i.e. the one associated with the greatest component of 
) is not the best one in the 

estimated final ranking (i.e. its corresponding component in ( is not the greatest 

one) and the mistake is a “serious one”. The final ranking is considered as seriously 

wrong if the weights of the two best alternatives differ significantly. More precisely: 

if � is the number of truly best alternative (and �� is its true weight) and � is the 

number of the best alternative accordingly to the EPV, � ≠ �, then we say that EFPV 

gives significantly incorrect PV (SIPV) when the following condition holds (com-

pare [25]): 

 �� − �� � d1  or  !� − !� � d2 (5) 

where d1, d2 are given positive numbers.  

So, in this concept, even if the estimated-best-alternative is not the true indeed, 

the mistake is not considered as a serious one when the truly best alternative  

possesses almost the same final weight. The term “almost the same” is specified by 

the constants d1 and d2.  

The third prioritization-quality measure taken into account in our simulation  

experiments is the chances of receiving the SIPV. In our studies, we assume various 

values of the parameters d1 and d2 (from 0 to 0.025).  
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3.2. Simulation framework 

To analyze the impact of imposed reciprocity on prioritization quality, we employ 

a simulation framework based on the concept presented in [25]. The motivation for 

such a simulation-based analysis was discussed in papers [24, 25]. However, to make 

this paper self-contained, we also provide an additional numerical example here to 

clarify our approach.  

As a thought experiment, let us assume that the true priority vector is 
 = 

= (0.45,0.32,0.23)=. The corresponding true pairwise comparison matrix (TPCM) 

is then:  

>?@A = B 1 1.406 1.9570.711 1 1.3910.511 0.719 1 F 

Suppose that a perfect decision-maker approximates these values using Saaty’s 

discrete scale. The resulting pairwise comparison matrix (RPCM) would be: 

G?@A = B 1 1 20.5 1 10.5 0.5 1F 

This is the best the decision-maker can do under the constraint of the scale,  

but the matrix is nonreciprocal. Since the AHP methodology requires reciprocal 

matrices, we must instead work with the following adjusted matrix: 

G?@A = B 1 1 21 1 10.5 1 1F 

Now, let us compare the estimated priority vectors obtained in both cases. 

In the reciprocal case, we can apply both the GM and REV methods. In this  

specific case, both yield the same result: H( = (0.413,0.327,0.260)=
.  

In contrast, when using the more accurate but nonreciprocal matrix (NPCM), only 

the GM method is applicable. The resulting estimate is I( = (0.469,0.296,0.235)=. 

The corresponding estimation errors are: AE(
, H() = 0.079,   AE(
, I() = 0.047, RE(
, H() = 0.025,   RE(
, I() = 0.016. 
We observe that, regardless of which error measure is considered, the estimation 

is significantly better when the nonreciprocal matrix is used. This is an important 

observation. However, one might argue that this outcome could be a coincidence, 

resulting from a specific choice of the true priority vector.  

To address this concern, we design a simulation experiment in which thousands 

of such “examples” are generated and analyzed using statistical methods. Let us now 

describe the simulation framework in more detail. 
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Within that framework before the simulations start, we set the following: the num- 

ber of alternatives (�), the number of criteria (�), the number of simulated different 

AHP problems (J), the probability distribution (PD) of PCM-elements-judgment- 

-errors, and the interval being the support for the “big” judgment errors. In the course 

of the simulation experiments at the very beginning, (� + 1) ”true” priority vectors 

are generated along with the corresponding ”true” pairwise comparison matrices. 

Then the elements of these perfect PCMs are randomly disturbed with the help of 

multiplicative random value, in literature sometimes called a “perturbation” factor, 

so that the PCM elements and the true priority weights are related in the following 

way: 

 ��� = K�� LMLN (6) 

where K�� is the perturbation factor which is expected to be near 1, e.g. [22-24,  

26, 27].  

Those estimation errors are independently distributed according to the PD. Apart 

from those perturbation-factor-errors, randomly selected elements are additionally 

disturbed by “big” judgment errors that, as suggested in the literature, may result 

from the questioning procedure, erroneous entering of the data, etc (see [22, 23, 25]). 

In our simulations, the big error occurs with predefined probability Pr(BE). In such 

a way we randomly produce PCMs that contain erroneous judgments about priority 

ratios. Next, two cases are simulated. First, the non-reciprocal case, where elements 

of those PCMs are rounded to the closest values from the adopted judgment scale. 

Second, the reciprocal case where additionally, complying with the reciprocity  

paradigm, all elements in the lower triangle of the matrices are replaced with the 

inverses of the corresponding symmetric elements from the upper triangles. Based 

on those rounded PCMs all related priority vectors are estimated with the help of  

the GM method. Then the estimation errors, AE and RE, as well as an indicator of 

“significantly incorrect” final PV are stored in one record along with various other 

characteristics of the generated AHP problem. Finally, all records are returned in  

one database. The consecutive steps conducted in our simulation experiments are  

the following: 

S1 Randomly generate true priority vectors vi; i = 0,…,k, along with related true comparison 

matrix O�  = [P�,Q� ], with P�,Q�  = ���/�Q� . According to Eq. (1) compute the final true priority 

vector v. 

S2 According to Eq. (6) modify independently the elements of the matrices O� , � = 0, … , � 

with the help of perturbation factor that possesses the distribution PD. The new matrices 

denote as OO�  = [PP�,Q� ]. 

S3 In matrices generated in step S2, with probability Pr(BE) replace elements PP�,Q�  with 	 ∙ P�,Q� , where B (the ”big” error) is randomly drawn from the predefined interval [LB, 

RB]. The matrices received after steps S2 and S3 denote as DMi. 

S4 Compute matrices NRMi, i = 0,…,k, by replacing all elements in the matrices DMi with  

the closest values from the adopted judgment scale. 
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S5 Compute matrices RMi, i = 0,…,k, modifying matrices NRMi, by replacing all elements  

in their lower triangles with the inverses of the corresponding symmetric elements in 

the upper triangles i.e. SP�,Q� = 1/�SPQ,�� , j > l. 

S6 On the basis of the reciprocal matrices RMi, i = 0,…,k, compute the estimated priority 

vectors rwi with the help of the GM method. 

S7 On the basis of the non-reciprocal matrices NRMi, i = 0,…,k, compute the estimated  

priority vectors nrwi with the help of the GM method. 

S8 According Eq. (2) compute the final estimated priority vectors rw and nrw, for recipro-

cal and nonreciprocal cases, respectively. 

S9 According the formulae (3) and (4), compute the estimation errors AE(v, rw), RE(v, rw) 

and AE(v, nrw), RE(v, nrw). Additionally, record which one of the estimated PVs, rw or 

nrw is better (with regards to each of the errors separately). 

S10 Set indicator rsi = 1, if the final estimated priority vector rw is significantly incorrect, 

otherwise set rsi = 0. Set indicator nrsi = 1, if the final estimated priority vector nrw  

is significantly incorrect, otherwise set nrsi = 0. 

S11 Write down values of all prioritization quality characteristics computed and/or set  

in steps S9 and S10, along with other problem characteristics as one record. 

S12 N times repeat Steps S1 to S12. 

S13 Return all records in one database file. 

In our experiments described here, the number of decision alternatives varies 

from 3 to 8, while the number of criteria � takes on values from 3 to 6. In step S1, 

the coefficients of the true PVs are generated independently according to the uniform 

distribution on the interval (0, 1), next the PVs are normalized to 1. In step S2  

the probability distributions (PD) of the multiplicative perturbation factor involve 

lognormal, gamma, uniform, and truncated normal ones. Such distributions of the 

disturbances are often considered in the literature. The perturbation factor distribu-

tions have expected values equal to 1, while their support is a subset of the interval 

DS = [0.5, 1.9]. In our experiments, any matrix can be also disturbed by big multi-

plicative error 	 (step S3), and the probability of its occurrence during any single 

judgment is Pr(BE) = 0.05, while its support is the interval [2, 5]. In step S10,  

to determine the significantly wrong ranking, we adopt the condition (5) with d1 = d2 = 0.001. The latter parameters’ values say that if the weights of the best and 

second-best alternatives are the same up to three decimal digits, then the differences 

between them are insignificant for us.  

4. Results of the simulation experiments 

The first remark in the Introduction concerns the fact, that the non-reciprocity of 

paired comparisons may arise solely due to the rounding errors, i.e. even perfect DM 

in some cases has to produce the non-reciprocal PCM if he/she wants to be as precise 

as possible. In such a case, interesting questions related to that observation can be 

asked: whether such errors, originated solely due to the rounding procedure are 

meaningful for the prioritization outcomes, and, whether the imposed reciprocity has 
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any significant impact on the magnitude of those errors. In order to answer the ques-

tions we conduct our simulations with steps S2 and S3 being omitted, so that the 

only source of judgment errors is the rounding procedure in step S4 (in the non-

reciprocal case), and possibly the forced reciprocity in step S5 (in the reciprocal 

case). Selected statistics of the considered types of errors as well as the frequency 

(i.e. the estimated probability) of the SIPV in the considered simulation setup are 

presented in Table 1. For both types of errors, the AE and RE, the mean values  

are presented as well as the quantiles of order 0.9, denoted Q0.9. Because the type of 

an judgment scale adopted directly affects rounding errors, in addition to the Saaty 

scale (SS) already introduced here, our studies also make use of other scales sug-

gested in the literature: the so-called Extended Saaty scale (ESS[J]) and the geo-

metric scale (GS[T]). The ESS[J] contains integers from 1 to J (J > 9), along with 

their reciprocals. Note that the SS is the ESS[9], so the ESS[17] that is used in our 

simulations is a much richer one. The geometric scale GS[T] contains numbers U  

of the form U = T�/V, � � W, with W being a predefined set of integers. In our studies, 

we assume T = 2 and W = {0.1, 2, …, 8} so that we have the same number of possible 

different judgments as in the SS. It is worth emphasizing once again that, in practice, 

the DM’s judgments are initially expressed in linguistic terms, after which the cor-

responding numbers from the adopted scale are entered into the PCM. For the anal-

ysis of various aspects of the scales usage see e.g. [17].  

 Table 1. Selected statistics of the PQC for the Reciprocal Case (RC) and Non-reciprocal 

Case (NRC). Rounding-Errors-Only Case. Results based on the WDB1 

 Absolute Errors Relative Errors SIPV 

 Mean Q0.9 Mean Q0.9 Pr 

Saaty’s scale 

RC 0.0079 0.0124 0.0397 0.0602 0.1103 

NRC 0.0062 0.0097 0.0317 0.0482 0.0825 

Extended Saaty’s scale ESS[17] 

RC 0.0077 0.0120 0.0382 0.0579 0.1054 

NRC 0.0059 0.0093 0.0299 0.0451 0.0776 

Geometric scale GS[2] 

RC 0.0042 0.0066 0.0211 0.0323 0.0527 

NRC 0.0038 0.0059 0.0190 0.0291 0.0450 

 
For each pair (�, �) the number of simulated AHP problems is 10000. We denote 

those sub-databases as DB(�, �), � = 3, …, 8, � = 3, …, 6. Consequently, for each 

number of alternatives � we have 40000 records, while the whole database ⋃ ⋃ DB(�, �)Z�$[\�$[  contains 240000 records related to different AHP setups. This 

database is denoted WDB1. Table 1 is based on those records. From that table, we 

learn that independently of the adopted judgment scale, all statistical characteristics 
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of the PQCs are much better in the non-reciprocal case. Under Saaty’s scale, the 

average absolute error AE of the final estimated PVs obtained in our experiments as 

well as the 90 %-quantile of these errors’ values are about 27 % greater in the recip-

rocal case. Similarly, both the mean value and the 90 %-quantile of the relative errors 

RE are about 25 % greater in the reciprocal case. The harm that results from the 

forced reciprocity is even more impressive when we consider the frequency of oc-

currence of the SIPV, it amounts to 34 %. Very similar, even slightly greater losses 

are observed when we look at the results obtained for the ESS[17]. The errors that 

originate solely from the rounding procedure are the smallest ones in the case of 

Geometric scale GS[2]. But also for this scale the statistics confirm that the prioriti-

zation quality characteristics are better for the non-reciprocal case. 

So we see, that even in such an ideal situation where only rounding errors are 

imposed on the perfect PCMs, the gain in prioritization quality due to rejection of 

the reciprocity property is very significant. 

Table 2. Selected statistics of the PQC for the Reciprocal Case (RC) and Non-reciprocal 

Case (NRC). Simulated-Judgment-Errors Case. Results based on the WDB2 

 Absolute Errors Relative Errors SIPV 

 Mean Q0.9 Mean Q0.9 Pr 

Saaty’s scale 

RC 0.0264 0.0441  0.1406 0.2298 0.2034 

NRC 0.0216 0.0357 0.1142 0.1840 0.1579 

Extended Saaty’s scale ESS[17] 

RC 0.0281 0.0475 0.1525 0.2547 0.2107 

NRC 0.0227 0.0377 0.1213 0.1979 0.1633 

Geometric scale GS[2] 

RC 0.0269 0.0458 0.1452 0.2447 0.2016 

NRC 0.0221 0.0369 0.1180 0.1934 0.1595 

 
Now, let us turn our attention to the “Simulated-Judgment-Errors Case”, i.e. the 

case where the perfect PCMs, generated within our simulation experiments, are dis-

turbed by random “judgment-errors”, as described in steps S2 and S3, in the previous 

section. The new database – denoted WTB2 – obtained in this situation also consists 

of 240000 records and has got the same structure as in the “rounding-errors-only” 

case. Table 2 is based on that database. We see that the results are in agreement with 

the previously presented ones. All the considered prioritization quality characteris-

tics are worse in the case with imposed reciprocity. This time, the loss in quality 

caused by the reciprocity axiom amounts to 22 %-29 % dependently on the PQC, 

regardless of the adopted judgment scale. During the simulation experiments for 

each simulated AHP problem, at step S9, we also check in which case, reciprocal or 

non-reciprocal, the estimated final PV is better in terms of the errors AE and RE. 
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The results are the following: for the Saaty’s scale, regarding the AE, the PV esti-

mated on the basis of the reciprocal PCMs are better in 32 % of all problems, while 

the ones estimated based on non-reciprocal PCMs are better in 63 % of cases. Anal-

ogous numbers related to the RE are 33 % and 66 %, respectively. Note that these 

percentages do not sum up to 100 %, because the comparisons were done with the 

precision up to 3 decimal places, and with that accuracy, some PV-estimation-errors 

are the same for both cases. As we can see in Table 2, the results obtained for the 

scales ESS[17] and GS[2] are very similar.  

As we have indicated earlier, Tables 1 and 2 are based on two databases that 

comprise all sub-databases DB(�, �) obtained for particular numbers of criteria and 

alternatives (�, �). At this point, it should be emphasized that for each of those sub- 

-databases, similar results concerning the impact of the imposed reciprocity are ob-

tained. For example in the reciprocal case, based on the sub-database ⋃ DB(6, �)Z�$[ , 

for Saaty’s scale, we obtain the mean values of AE and RE equal to 0.0186 and 

0.1168, respectively, and the frequency of the SIPV is 0.3190. Analogous values 

related to the non-reciprocal case are as follows: 0.0147, 0.0913, and 0.2572, respec-

tively. The complete comparison results obtained separately for databases DB(�, �), � = 3,…,8, � = 3,…,6, are presented in Tables A1-A3 in the Appendix. As the results 

for different scales are very similar in spirit, these tables contain only the ones  

received for Saaty’s scale.  

Given the presented simulation results, it seems undeniable that adoption of the 

reciprocity property is very costly in terms of the quality of the prioritization results. 

In the next section, we discuss the modifications of the prioritization techniques that 

would be a necessity in consequence of the repudiation of the reciprocity paradigm.  

5. Consequences of the reciprocity-axiom rejection 

One may wonder why the reciprocity axiom is so popular. After all, there are 

even more natural requirements (such as the ordinal transitivity condition) that  

are not explicitly incorporated into prioritization techniques, whereas reciprocity is. 

In our opinion, the main reason for making the reciprocity requirement compulsory 

is Saaty’s consistency index.  

Apart from the prioritization methods that allow us to estimate the final PV based 

on the PCMs, another crucial problem in the pairwise-comparison based inference is 

the so-called consistency analysis. Due to the rounding procedure and natural human 

limitations, it is quite obvious, that some level of judgments’ incorrectness must be 

accepted. On the other hand, if the DM’s judgment-errors are really serious, then the 

pieces of information contained in the PCM may be very misleading. The principal 

goal of the consistency analysis is to help the DM to distinguish between useful 

PCMs and the useless ones. What is the link between the two: the reciprocity para-

digm and the consistency analysis? The link is fundamental, as the historically first 

and still most widely used approach to consistency analysis requires PCM reciprocity. 

The method is due to T. Saaty’s [2]. To ”measure” the degree of the PCM-inconsistency, 
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he proposed to use a certain PCM-characteristic, called the “consistency index”. That 

index denoted here as ]^ is closely related to the REV and is defined as follows: 

]^(�) = _`a� − �� − 1  

where � is, as usual, the number of decision-alternatives (or other stimuli that one 

wants to rank).  

It was a brilliant idea on Saaty’s part, and the fact that the AHP provided the 

decision-makers with the method for the consistency analysis was its very important 

advantage and perhaps a major reason for its growing popularity. 

Now, the crucial fact is, that the index ]^ works properly only if the PCM is the 

reciprocal one. In such a case, it can be proved that ]^(�) � 0 and that ]^(�) = 0 if 

and only if the PCM is consistent, e.g. [2, 28]. However, if the PCM is not reciprocal, 

then the ]^ is meaningless, as it can be negative. In consequence, in this approach, 

the PCMs have to be reciprocal.  

It is worth noting, in one of his papers, Saaty admitted that his index is called  

a “consistency index” just by misuse of language. In fact, it is an indicator of incon-

sistency, so the term “inconsistency index” seems to be more adequate, and such  

a term will be used in our paper. 

It results from what we noted that inference based on the nonreciprocal PCMs 

excludes the usage of the ]^. On the other hand, undeniably, the consistency analysis 

is very important in pairwise comparison based inference. But the question is 

whether this specific inconsistency index, the ]^, is irreplaceable? Is it really neces-

sary to obtain correct prioritization results? In our opinion, it is not. Over the last 

decades, literature has provided us with many competitive proposals for such indices 

e.g. [24, 29-31]. Most of them are easier to calculate and in contrast to the SI, they 

have a good underlying interpretation (as a matter of fact, the ]^ has no meaningful 

interpretation at all). Moreover, many of them are better related with the prioritiza-

tion results, see e.g. [24, 25]. What is most important from our perspective, contrary 

to the ]^, the definitions of many competitive indices can be easily adapted for the 

non-reciprocal case. Below, we present modifications of the two inconsistency indi-

ces most frequently used as competitors to ]^. The first one, for the reciprocal case, 

was proposed in [29]. It is the so-called geometric mean index (b^), and it possesses 

very good properties [23, 25]. Its version for the non-reciprocal PCMs proposed in 

our studies is the following: 

b^(�) = 1�(� − 1) & & logV(���!�/!�)�
�$


�
�$
  

where ( = (!
, … , !�) is the EPV that was obtained by applying the GM method.  

Another interesting index (e^) was proposed by Koczkodaj, who proposed  

characterizing the triad’s inconsistency by the number that is given by the following 

simple formula, equivalent to the original one proposed in [30] 
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>^f��� , ���, ���g = h������ − ���hmax (������, ���) 

Koczkodaj’s index e^ of any reciprocal PCM is given as follows: e^ = maxl>^f��� , ���, ���gm, 
where the maximum is taken over all triads in the upper triangle of the PCM.  

That definition can be very easily extended to the non-reciprocal case. For such 

cases, it is enough to assume the value of e^ as the maximum taken over all triads 

of the PCM. 

To verify the usefulness of those indices in the non-reciprocal case, we study their 

relationship with the quality of the prioritization results, i.e., with PQCs considered 

here. Any good inconsistency index has to be well correlated with those characteris-

tics; most preferably, those relationships should be monotonic ones. Following the 

approach presented in [24, 25], to study those relationships, the whole database 

WDB2 is arranged in ascending order concerning the values of a given inconsistency 

index and is next split into a number (say e) of separate classes – let us denote those 

classes as ^�@� (� = 1, …, e). For each class, ^�@� the mean value of the considered 

index is computed as well as, for the corresponding PCMs, the mean values of errors 

(AE or RE) and the observed frequency (Fr) of SIPV. A more detailed description of 

those computations can be found in [20]. Table 3 presents the Spearman and Pearson 

correlation coefficients between the class mean values of the particular PQCs and 

indicated indices. In each case, the number of classes is e = 20. Although in the case 

of nonreciprocal PCMs Saaty’s index ]^ is uninterpretable, its values can neverthe-

less be computed. So we put the correlation coefficients for the ]^ into Table 3 as 

well, just to let the reader know how the index behaves for such matrices. 

Table 3. Spearman’s and Pearson’s correlation coefficients between the inconsistency 

indices ]^, b^, e^ and the PQCs: AE, RE and Fr. The non-reciprocal case, Saaty’s scale 

 Spearman’s Correlation Coefficients 

 ]^ b^ e^ AE 0.561 0.993 0.984 RE 0.559 0.994 0.984 Fr 0.386 0.960 0.924 

 Pearson’s Correlation Coefficients 

 ]^ b^ e^ AE 0.830 0.986 0.969 RE 0.832 0.986 0.968 Fr 0.526 0.904 0.876 

 

As we see, both indices b^ and e^ perform really well. The monotonic character 

of their association with the PQCs is close to perfect, as the values of the Spearman’s 
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correlation coefficients are close to 1. What is more, Pearson’s coefficients are also 

very high, especially in the case of the b^. Thus we can propose the linear regression 

models that relate the b^ with the PQCs. As presented in Table 3 the average coeffi-

cients’ values are means of coefficients computed for each database DB(�, �) sepa-

rately, the regression models are also developed for different numbers of decision-

alternatives separately, while the number of criteria � is a second explanatory varia-

ble (apart from the b^). Note that in the models, the variable b^ (the index value) is 

the mean of the indices b^ computed in step S7 for all matrices opO�, � = 0,…,�. 

Table 4 provides us with the estimated models for the frequency of the SIPV’c 

occurrence Fr, as well as for the errors AE and RE. Apart from the models’ coeffi-

cients �, q, T, we also present two fundamental quality characteristics of the models: 

the coefficient of determination GV and the model-standard-error MSE. As we see, 

the models are very good, especially the ones for the absolute and relative errors. 

Table 4. Models for Frequency of SIPV (Fr), the Absolute Error (AE), and the Relative 

Error (RE) in dependence of the inconsistency index b^ and the number of criteria � 

 Fr = � + q · b^ + T · � 

 � q T GV MSE � = 3 0.0602 0.2155 –0.00001 0.84 0.00029 � = 4 0.1154 0.2291 –0.00819 0.88 0.00044 � = 5 0.1435 0.2478 –0.01559 0.91 0.00040 � = 6 0.1418 0.2597 –0.01864 0.94 0.00029 � = 7 0.1334 0.2585 –0.02092 0.94 0.00029 � = 8 0.1261 0.2324 –0.02090 0.92 0.00030 

 AE = � + q · b^ + T · � 

 � q T GV MSE � = 3 0.0343 0.0420 –0.00315 0.96 0.000003 � = 4 0.0297 0.0278 –0.00286 0.96 0.000002 � = 5 0.0250 0.0220 –0.00259 0.96 0.000002 � = 6 0.0200 0.0183 –0.00209 0.97 0.000001 � = 7 0.0166 0.0153 –0.00173 0.97 0.000001 � = 8 0.0142 0.0130 –0.00149 0.97 0.000001 

 RE = � + q · b^ + T · � 

 � q T GV MSE � = 3 0.1171 0.1361 –0.0117 0.96 0.000034 � = 4 0.1313 0.1216 –0.0136 0.96 0.000051 � = 5 0.1364 0.1190 –0.0151 0.96 0.000056 � = 6 0.1289 0.1179 –0.0142 0.97 0.000037 � = 7 0.1252 0.1146 –0.0139 0.97 0.000035 � = 8 0.1214 0.1110 –0.0134 0.97 0.000031 
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Once we have those models built, one can use them in the PCMs acceptance pro-

cedure. If the DM is primarily concerned with the detection of the best alternative, 

then the models for the Fr should be used. If the correct estimation of each priority 

weight is the most important goal, then the models for the RE or AE can be adopted. 

Given the value of the index b^ and the number of criteria, the associated value of 

the considered PQC can be easily approximated. The obtained value should then be 

compared with the level of risk deemed acceptable by the DM (i.e., the acceptable 

levels of Fr, AE, and/or RE). If the value is less than that level, then the PCMs defin-

ing the AHP problem should be accepted, otherwise, the DM should try to improve 

their consistencies. All those models are valid for the observed range of the explan- 

atory variables, i.e. when the index b^ is within the interval [0.1, 1.1] and � = 3, …, 6. 

6. Final remarks and recommendations 

We discuss here the results for the number of alternatives � = 3,…,8. However 

with the help of our simulation framework, we have also performed studies for 

greater numbers of alternatives and/or criteria. All our results confirm the same  

observation: always considered prioritization quality characteristics are worse in the 

cases with imposed reciprocity. However, before concluding the paper, we would 

like to stress once again that we do not suggest abandoning such a legitimate theo-

retical property as the reciprocity of the underlying true priority ratios. We also do 

not challenge the idea of PCM consistency analysis – consistency is a very important 

and desired feature of any judgments. Our arguments are aimed solely against arti-

ficially forced consistency, that is the consistency that is assured by the adopted 

method of gathering information about priorities. Consistency is very welcome if it 

is a result of DMs’ real opinions, unfortunately this occurs very rarely in real-world 

praxis. Obviously, it is reasonable to perform a consistency analysis in order to draw 

the DMs’ attention to particularly inconsistent judgments and allow them to verify 

whether these “suspicious” opinions are correct. Thus, some specific consistency- 

-improvement-oriented methods are reasonable. But forcing the reciprocity just by 

the method of collecting DMs’ assessments about priority ratios is simply ignoring 

the pieces of information that would be provided in the additional judgments. It is 

important to remember that achieving consistency in the pairwise comparison matrix 

is not the primary goal of decision making analysis. However, many theoretically 

oriented studies seem to treat it as such. Is this truly the objective we seek? While  

a reciprocally consistent matrix may appear attractive, it can be more misleading 

than a nonreciprocal matrix that better reflects the true, often inconsistent, judgments 

of the decision maker. The judgments (which often stem from the decision maker’s 

subjective feelings about relative importance) are inherently inconsistent. The goal 

should not be to enforce consistency artificially solely for the sake of making the 

matrix appear neat. Instead, we should aim to obtain priority weight estimates that 

most accurately represent the decision maker’s (possibly inconsistent) perceptions. 
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This important aspect was also addressed in a number of papers, e.g. [24, 32], and 

recently in [33]. 

Saaty’s idea of the consistency analysis was brilliant, and it started a new era in 

decision making analysis. However, from what we show, it results that his specific 

consistency index should be rejected along with the reciprocity axiom. We argue that 

this can be done without causing any harm to the prioritization results. On the con-

trary, the newly proposed models provide more effective tools for supporting  

consistency analysis and decisions regarding the acceptance of PCMs. They are very 

reasonable alternatives to the classical AHP approach. The decisions aided by those 

models are based on the classical statistical idea of taking into account the risk of 

making wrong decisions, a well-established concept in uncertain decision making. 

In contrast, the approach still supported by the classical AHP is to make use of  

a given “consistency threshold”. Then the decision about the PCM acceptance is made 

without any participation of the DMs (e.g. their attitude towards risk is completely 

ignored). Such an approach in general, and particularly the specific choice of the 

thresholds were criticized in literature, see e.g. [24, 33, 35, 36].  

However, while the procedure for PCMs’ acceptance is an important component 

of the AHP methodology, it is not the primary focus of this paper. By developing 

these models, we demonstrate that rejecting the reciprocity requirement, along with 

the index ]^, does not substantially harm the AHP decision-making process. The ]^ 

can be successfully replaced by other competitive indices. 

To summarize the remarks about the reciprocity axiom: in our opinion, the pop-

ularity of the consistency index ]^, the very first inconsistency indicator in literature, 

is the real reason why the reciprocity property became a paradigm of the AHP. And 

perhaps the only serious consequence of the repudiation of the paradigm of reciproc-

ity is that the ]^ has to be rejected as well. However, it can be done without any loss 

in the quality of the prioritization results. On the contrary, if we use the non-recip-

rocal PCMs, those results are likely to be better.  

In [16], Thomas Kuhn wrote that the idea of the repudiation of a paradigm, when 

proposed, is initially rejected in various forms by scientists in the given field. Since 

the methodology without the paradigm is initially neither well-developed nor well-

understood, the position of its proponents is weak. However, in regard to the reci-

procity paradigm, we think that it is worth trying to bring the attention of the decision 

makers’ community to this problem. 
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Appendix 

Tables presented in this Appendix show the results of the comparison of the  

prioritization quality characteristics obtained for the reciprocal and non-reciprocal 

PCMs. They are based on databases DB(�, �), � = 3, …, 8, � = 3, …, 6, obtained with 

the help of the simulation framework for the judgment error case (steps S1-S13) and 

described in Section 3. In the tables, the acronyms RC and NRC indicate the Recip-

rocal and Non-reciprocal Cases, respectively. The prioritization-quality characteris-

tics AE, RE, and SIPV are introduced in Section 3.1. 

Because the results for different judgment scales are very similar in spirit, these 

tables contain only the ones received for Saaty’s scale.  
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Table A1. Comparison of the mean values of the average absolute error AE,  

defined by Eq. (3) for the Reciprocal and Non-reciprocal Cases.  

Results presented separately for the databases DB(�, �)  

Average absolute error AE 

  � = 3 � = 4 � = 5 � = 6 

� = 3 
RC 0.0414 0.039 0.0361 0.0327 

NRC 0.0334 0.0316 0.0295 0.0267 

� = 4 
RC 0.0378 0.0356 0.0329 0.0305 

NRC 0.0309 0.0290 0.0266 0.0244 

� = 5 
RC 0.0314 0.0292 0.0273 0.0254 

NRC 0.0261 0.0241 0.0221 0.0204 

� = 6 
RC 0.0255 0.0238 0.0222 0.0206 

NRC 0.0214 0.0198 0.0182 0.0167 

� = 7 
RC 0.0214 0.0199 0.0184 0.0172 

NRC 0.018 0.0167 0.0154 0.0141 

� = 8 
RC 0.0181 0.0171 0.0158 0.0147 

NRC 0.0154 0.0143 0.0131 0.0121 

Table A2. Comparison of the mean values of the relative absolute error RE,  

defined by Eq. (4) for the Reciprocal and Non-reciprocal Cases.  

Results presented separately for the databases DB(�, �)  

Relative absolute error RE 

  � = 3 � = 4 � = 5 � = 6 

� = 3 
RC 0.1377 0.1272 0.1157 0.1040 

NRC 0.1096 0.1015 0.0934 0.0839 

� = 4 
RC 0.1649 0.1532 0.1397 0.1282 

NRC 0.1328 0.1224 0.1113 0.1016 

� = 5 
RC 0.1698 0.1559 0.1437 0.1328 

NRC 0.1388 0.1266 0.1149 0.1054 

� = 6 
RC 0.1634 0.1510 0.1395 0.1290 

NRC 0.1354 0.1244 0.1134 0.1033 

� = 7 
RC 0.1595 0.1469 0.1349 0.1251 

NRC 0.1326 0.1217 0.1111 0.1017 

� = 8 
RC 0.1539 0.1439 0.1321 0.1222 

NRC 0.1296 0.1192 0.1085 0.0998 
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Table A3. Comparison of the frequencies of SIPV, see Section 3.1,  

for the Reciprocal and Non-reciprocal Cases. Results presented  

separately for the databases DB(�, �)  

Frequency of SIPV 

  � = 3 � = 4 � = 5 � = 6 

� = 3 
RC 0.1436 0.1486 0.1517 0.1434 

NRC 0.1093 0.1128 0.1168 0.1104 

� = 4 
RC 0.2186 0.2145 0.2114 0.2068 

NRC 0.1696 0.1713 0.1693 0.1596 

� = 5 
RC 0.2432 0.2315 0.2317 0.2210 

NRC 0.2017 0.1885 0.1776 0.1682 

� = 6 
RC 0.2372 0.2341 0.2220 0.2103 

NRC 0.1926 0.1832 0.1755 0.1554 

� = 7 
RC 0.229 0.2142 0.2012 0.1932 

NRC 0.1858 0.1694 0.1553 0.1389 

� = 8 
RC 0.2159 0.2022 0.1872 0.1693 

NRC 0.172 0.1514 0.1362 0.1202 

 


