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Abstract. In this study, we provide a novel three-parameter extension of the power Burr
X model obtained by the inverse transformation method. The unique model, known as the
inverted power Burr X distribution (IP-BXD), is capable of modeling lifespan data with de-
creasing, increasing, and upside-down patterns, making it ideal for capturing non-monotonic
procedures. Explicit formulations are given for numerous statistical measures, such as
ordinary moments, incomplete and conditional moments, mean residual lifespan, and mean
inactivity time. Furthermore, it can be used quite well in a statistical context. This argument
is supported under complete and hybrid censoring samples by an examination of traditional
techniques, such as maximum likelihood and maximum product spacing, to estimate the
unknown parameters. Additionally, the use of an informative gamma prior under the squared
error loss function in the Bayesian estimation approach is clarified. The approximate
confidence intervals based on normality approximation as well as the Bayesian credible
intervals are determined. We conducted a comparative analysis of different estimates,
employing Monte Carlo simulation to evaluate their performance in terms of some accuracy
measures. Finally, three real data sets are considered to analyze the usefulness and flexibility
of the proposed model in comparison to some other distributions. In addition, we examined
these real-world datasets to demonstrate how the suggested distribution could be used in
practice using the suggested techniques.
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1. Introduction

The distribution known as the Burr type X distribution (B-XD) was first presented
by Burr [1], and it has attracted a significant amount of interest in the academic
literature. In the fields of reliability research, predicting the lifetime of random oc-
currences, health, agriculture, and biology, the B-XD has been a handy tool. In recent
years, several authors have conducted research on various aspects of the B-XD. For
further information, please refer to Ahmed et al. [2], Surles and Padgett [3], Kundu
and Raqab [4], Aludaat et al. [5], and Fayomi et al. [6]. The probability density func-
tion (PDF) and cumulative distribution function (CDF) of the B-XD are provided
via

f (z) = 2αλ
2ze−(λ z)2

[
1− e−(λ z)2

]α−1
, z > 0, (1)

and

G(z) =
[
1− e−(λ z)2

]α

, z > 0, (2)

where α > 0 and λ > 0 are the shape and scale parameters, respectively. Utilizing
a random variable’s power transformation to add a new shape parameter may result
in a more flexible model. Usman and Ilyas [7] developed power B-XD (PB-XD) with
a shape parameter based on a transformation approach. The CDF and PDF of the
PB-XD are provided via

G(y) =
[

1− e−(λyθ)
2
]α

, y > 0, (3)

and

g(y) = 2αθλ
2y2θ−1 e−(λyθ)

2
[

1− e−(λyθ)
2
]α−1

, y > 0, (4)

respectively, θ > 0 is an additional shape parameter.

One of the most popular study topics in probability distributions is determining
the inversion of uni-variate probability distributions and their application under the
inverse transformation. The study of inverse distributions has resulted in a more com-
prehensive understanding of standard distributions and has added more flexibility for
the purpose of fitting data. Inverted distributions have a wide variety of applications,
including finding solutions to issues in the fields of survey sampling, life testing,
econometrics, engineering sciences, biological sciences and medical research. For
example, the inverted Kumaraswamy by Abd AL-Fattah et al. [8], estimation of pa-
rameters for inverse power Ailamujia and truncated inverse Power Ailamujia distri-
butions based on progressive Type-II censoring Scheme by ElGazar et al. [9], new
hybrid Weibull-inverse Weibull distribution by Noori et al. [10], inverted exponen-
tiated Lomax by Hassan and Mohamed [11], inverted weighted Lindley by Ramos
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et al. [12], inverted Pareto by Guo and Gui [13], inverted Lindley by Sharma et
al. [14], inverted power Lindley by Barco et al. [15], inverse Sushila by Adetunji
et al. [16], inverted Akash by Okereke et al. [17], inverted exponentiated Weibull
by Lee et al. [18], inverted power Lomax by Hassan and Abd-Alla [19], inverted
power Akash by Enogwe et al. [20], inverted xgamma by Yadav et al. [21], inverted
Nadarajah-Haghighi by Tahir et al. [22], inverted Topp-Leone by Hassan et al. [23],
inverted power Cauchy by Sapkota and Kumar [24], inverted Hamza by Frank et
al. [25], bivariate Fréchet distribution by Almetwally and Muhammed [26], inverted
Shanker by Pokalas et al. [27], inverted power modified Chris-Jerry by Awajan et
al. [28], inverted Weibull generator by Abdelall et al. [29], inverted Nakagami-m by
Louzada et al. [30], inverted Maxwell by Omar et al. [31], inverted power Ramos-
-Louzada by Al Mutairi et al. [32], inverted unit Teissier by Alsadat et al. [33], inverse
power Zeghdoudi by Elbatal et al. [34], inverted power XLindley by Hassan et al. [35]
distributions, etc.

In this study, we introduce a novel three-parameter inverted distribution based
on the PB-XD, which referred to the inverted PB-XD (IPB-XD), derived through
an inverse transformation technique. We investigated the IPB-XD for the subsequent
justifications:

• The IPB-XD can model increasing, decreasing or upside-down accommodat-
ing different patterns of failure rates. It is particularly suitable for fitting skewed
data that may not be adequately modeled by other common distributions.

• A number of structural features are explained, including explicit formulas for
the mean residual lifespan (MRL), moments of residual life function (RLF),
quantile function (QF), moments of reversed residual life function (RRLF),
ordinary moments, incomplete moments (IMs), and conditional moments
(CMs). These characteristics offer a thorough comprehension of the behavior
of the model.

• It is critical to identify the optimal estimation method for the IPB-XD parame-
ters. In light of this, three different estimating techniques, including maximum
likelihood (ML), maximum product spacing (MPS), and Bayesian approaches
are investigated under complete and hybrid censoring sampling.

• Bayesian estimators (BEs) of the IPB-XD parameters, reliability function (RF),
and hazard rate function (HRF), under the squared error loss function, is deter-
mined using gamma prior distributions. Additionally, approximate confidence
intervals (ACIs) and highest posterior density (HPD) credible intervals are
generated.

• To address the computational challenges associated with BEs and HPD in-
tervals, we employ the Markov chain Monte Carlo (MCMC) approximation
method. Monte Carlo simulation research was carried out, taking into account



Reliability inference of the inverted power Burr X distribution under the hybrid censoring approach ... 49

varied sample sizes, to assess the efficacy of different estimates under various
hybrid censoring scenarios.

• The IPB-XD consistently provides superior results in modeling lifetime data
compared to competing distributions, as evidenced by its successful application
to two real-world datasets (see Section 6).

The following is the order of the article: The construction of the innovative dis-
tribution along with some of its graphical representation are presented in Section 2.
The novel distribution’s attributes are shown in Section 3. The description of the
hybrid censoring scheme along with the ML estimators (MLEs), MPS estimators
(MLEs), and BEs of the IPB-XD parameters, RF and HRF, is given in Section 4.
The Monte Carlo simulation method technique is presented in Section 5. To assess
the IPB-XD’s flexibility and practical usefulness compared to other models, Section 6
offers two real-world data sets.

2. The IPB-XD description

This section introduces a three-parameter model called the IPB-XD as a new
extended version of the PB-XD. Expressions of the PDF, CDF, RF, HRF, and
cumulative HRF (CHRF) are presented. Also, graphical representation and 3D plots
for the PDF, CDF, RF, and HRF are provided.

Suppose that the random variably Y has the CDF of equation (3), then X =
1
Y

follows the IPB-XD. The CDF for the IPB-XD is available via

F(x;Ψ) = 1−
[
1− e−λ 2x−2θ

]α

, x > 0, (5)

and F(x;Ψ) = 0 for x ≤ 0, where θ ,α > 0 are shape parameters, λ > 0 is the scale
parameter, and Ψ = (α,λ ,θ)T is the set of parameters. The corresponding PDF is
defined by

f (x;Ψ) = 2αθλ
2x−2θ−1e−λ 2x−2θ

[
1− e−λ 2x−2θ

]α−1
, x > 0, (6)

and f (x;Ψ) = 0 for x ≤ 0. For θ = 1 in equation (5), the IPB-XD reduces to the in-
verted exponentiated Rayleigh distribution (inverted Burr X) (see Ghitany et al. [36]).
For θ = 1, and α = 1 in equation (5), the IPB-XD reduces to the inverted Rayleigh
distribution (see Voda [37]).

The RF, HRF, and CHRF of the IPB-XD are given, respectively by:

R(x;Ψ) =
[
1− e−λ 2x−2θ

]α

,
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Fig. 1. Graphs of the PDF for the IPB-XD at λ = 0.5 and 1.2

and R(x;Ψ) = 1 for x ≤ 0,

h(x;Ψ) =
2αθλ 2x−2θ−1e−λ 2x−2θ

1− e−λ 2x−2θ
,

and h(x;Ψ) = 0 for x ≤ 0,

H(x;Ψ) =−α log
[
1− e−λ 2x−2θ

]
,

and H(x;Ψ) = 0 for x ≤ 0, respectively.
Figures 1 and 5 represent different PDF graphs and 3D plots for the IPB-XD for

different values of the parameters. As seen by the visual representation, the IPB-XD
can take different uni-modals and asymmetric patterns. Figure 2 graphically illus-
trates the increasing CDF and decreasing RF of the IPB-XD for selected parameter
values. This behavior is also visually evident in the 3D plots presented in Figure 3.
The IPB-XD HRF is versatile, as shown in Figures 4 and 5, showing how it can
display increasing, decreasing, and upside-down shapes through various HRF graphs
and 3D plots for the parameters provided.

3. Characteristic analysis of the IPB-XD

In this section, we present some important statistical and mathematical measures
for the IPB-XD model, such as, QF, ordinary moments, MRL, mean inactivity time
(MIT), RLF, QF, RRLF, IMs, and CMs.
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Fig. 2. Graphs of the CDF and RF for the IPB-XD at λ = 0.5
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Fig. 3. 3D graphs of the CDF and RF for the IPB-XD at λ = 0.5 and θ = 1.5

3.1. Quantile function

QFs are used in theoretical aspects, statistical applications and Monte Carlo
methods. Monte Carlo simulations employ QFs to produce simulated random vari-
ables for classical and new continuous distributions. The p-th QF of IPB-XD can be
obtained by inverting equation (5) as follows:

xp = Q(p) =

{
1

λ 2 log

(
1

1− (1− p)
1
α

)}−1
2θ

,

where p∈ (0,1). One of the earliest skewness measures to be suggested is the Bowley
skewness (Kenney and Keeping [38]) defined by:

SK =
Q(3

4)+Q(1
4)−2Q(1

2)

Q(3
4)−Q(1

4)
.
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Fig. 4. Graphs of the HRF for the IPB-XD at λ = 0.5 and 1.2
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Fig. 5. 3D graphs of the PDF and HRF for the IPB-XD at λ = 0.5 and θ = 1.5

On the other hand, the Moors kurtosis (Moors [39]) based on quantiles is given by:

KU =
Q(7

8)−Q(5
8)+Q(3

8)−Q(1
8)

Q(6
8)−Q(2

8)
,

where Q(·) represents the QF. The measures SK and KU are less sensitive to out-
liers and they exist even for distributions without moments. For symmetric unimodal
distributions, positive kurtosis indicates heavy tails and peakedness relative to the
normal distribution, whereas negative kurtosis indicates light tails and flatness. For
the normal distribution, SK = KU = 0.

3.2. Some measures of moments

In statistical analysis, a moment examination is crucial for understanding the prop-
erties of any lifetime distribution. It provides a numerical way to model the distribu-
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tion’s characteristics by identifying the behavior of key parameters. This includes
mean, variance, skewness, and kurtosis coefficients. The r-th moment of IPB-XD is
obtained as the following:

µ
′
r =

∫
∞

0
xr f (x;Ψ)dx = 2αθλ

2
∫

∞

0
xr−2θ−1e−λ 2x−2θ

[
1− e−λ 2x−2θ

]α−1
dx. (7)

If |z|< 1 and b > 0 is a real non-integer, the power series hold

(1− z)b−1 =
∞

∑
i=0

(−1)i(b−1
i

)
zi.

Therefore, by using the previous expansion in equation (7), the r-th moment becomes
as follows

µ
′
r = 2αθλ

2
∞

∑
i=0

(−1)i(α−1
i

)∫ ∞

0
xr−2θ−1e−(i+1)λ 2x−2θ

dx. (8)

Using the transformation y = (i+1)λ 2x−2θ , in equation (8), and after some integral
manipulations, the r-th moment reduces to

µ
′
r = αλ

r
θ

∞

∑
i=0

(−1)i(α−1
i

) Γ(1− r
2θ
)

(i+1)1− r
2θ

,r < 2θ . (9)

The moment generating function of the IPB-XD, based on equation (9), can be
expressed as:

MX(t) =
∞

∑
i, j=0

αλ
r
θ (−1)i(α−1

i

) tr

r!
Γ(1− r

2θ
)

(i+1)1− r
2θ

,r < 2θ .

A number of statistical metrics depend heavily on incomplete moments. The s-th
IM of the IPB-XD distribution is given by:

κs(t) = E(X
s | X < t) =

∫ t

0
xs f (x;Ψ)dx

= 2αθλ
2

∞

∑
i=0

(−1)i(α−1
i

)∫ t

0
xr−2θ−1e−(i+1)λ 2x−2θ

dx

= αλ
s
θ

∞

∑
i=0

(−1)i(α−1
i

)Γ(1− s
2θ
,(i+1)λ 2t−2θ )

(i+1)1− s
2θ

. (10)

where Γ(s, t) =
∫

∞

t
xs−1e−xdx is the upper incomplete gamma function. The Lorenz

and Bonferroni curves, which are helpful in science, engineering, economics, and
demography, are estimated using the incomplete moment. The mathematical expres-
sion for these numbers are the Lorenz L(t) = κ1(t)/µ

′
1 , where κ1(t) is obtained
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from equation (10) by putting s = 1, while the Bonferroni curves, represented by
B(t)= L(t)

/
F(t;Ψ).

For the IPB-XD model, the CM defined by E(X s | X > t), which is represented as

E(X s | X > t) =
1

R(t;Ψ)
ηs(t),

where

ηs(t) =
∫

∞

t
xs f (x;Ψ)dx = 2αθλ

2
∞

∑
i=0

(−1)i(α−1
i

)∫ ∞

t
xr−2θ−1e−(i+1)λ 2x−2θ

dx

= αλ
s
θ

∞

∑
i=0

(−1)i(α−1
i

)γ(1− s
2θ
,(i+1)λ 2t−2θ )

(i+1)1− s
2θ

, (11)

and γ(s, t) =
∫ t

0
xs−1e−xdx is the lower incomplete gamma function.

3.3. Moments of residual lives

Let a component’s operational lifespan be represented by the random variable
X . The residual lifetime, defined as the time remaining until failure given that the
component is still functioning at time t, can be expressed as the conditional random
variable X − t|X > t. The n-th order moment of RLF of random variable X is given
by:

ψn(t) = E((X − t)n | X > t) =
1

R(t;Ψ)

∫
∞

t
(x− t)n f (x;Ψ)dx, n ≥ 1.

Using PDF (6) and applying the binomial expansion of the term (x − t)n into the
above formula gives

ψn(t) =
1

R(t;Ψ)

n

∑
d=0

(−t)n−d(n
d

)∫ ∞

t
xn f (x;Ψ)dx

=
αλ

s
θ

R(t;Ψ)

∞

∑
i=0

n

∑
d=0

(−1)i(−t)n−d(α−1
i

)(n
d

)γ(1− s
2θ
,(i+1)λ 2t−2θ )

(i+1)1− s
2θ

.(12)

The MRL plays a very important role in reliability, survival analysis, actuarial
sciences, economics, and social sciences for characterizing lifetime distributions.
It also plays an important role in repair and replacement strategies and summarizes
the entire residual life function. For IPB-XD, the MRL is obtained by setting n = 1
in equation (12) as follows:
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ψ1(t) = E((X − t) | X > t) =
1

R(t;Ψ)

∫
∞

t
x f (x;Ψ)dx− t

=
αλ

1
θ

R(t;Ψ)

∞

∑
i=0

(−1)i(α−1
i

)γ(1− 1
2θ
,(i+1)λ 2t−2θ )

(i+1)1− 1
2θ

− t.

3.4. Moments of reversed residual lives

In reliability theory, the RRLF describes the additional time a component remains
inactive after failing at time t. The conditional random variable t−X |X < t represents
the elapsed time since the component’s failure, given that it failed before or at time t.
The r-th moment of RRLF can be obtained by the following formula

ξr(t) = E((t −X)r | X ≤ t) =
1

F(t;Ψ)

∫ t

0
(t − x)r f (x;Ψ)dx.

Using PDF (6) and applying the binomial expansion for the term (t − x)r into the
above formula, we get

ξr(t) =
1

F(t;Ψ)

r

∑
d=0

(−t)r−d(r
d

)∫ t

0
xr f (x;Ψ)dx

=
αλ

s
θ

F(t;Ψ)

∞

∑
i=0

n

∑
d=0

(−1)i(−t)n−d(α−1
i

)(n
d

)Γ(1− s
2θ
,(i+1)λ 2t−2θ )

(i+1)1− s
2θ

.(13)

The MIT is obtained by setting r = 1 in equation (13) as follows:

ξ1(t) = E(t −X | X ≤ t) = t − 1
F(t;Ψ)

∫ t

0
x f (x;Ψ)dx

= t − αλ
1
θ

F(t;Ψ)

∞

∑
i=0

(−1)i(α−1
i

)Γ(1− 1
2θ
,(i+1)λ 2t−2θ )

(i+1)1− 1
2θ

.

4. Statistical inference under hybrid censoring

This section provides details on the characteristics of hybrid censoring samples
used in the study. Three different estimating techniques, including ML, MPS, and
Bayesian are suggested to obtain the point estimators of the parameters α,θ ,λ , as
well as RF and HRF of the IPB-XD. Interval estimators, including ACI as well as the
HPD credible intervals, are produced. More papers used hybrid censoring samples
as: Al Mutairi et al. [40] discussed Bayesian and non-Bayesian inference for inverse
Weibull model based on joint censoring. Haj Ahmad et al. [41] obtained statistical
analysis of alpha power inverse Weibull distribution. Almetwally et al. [42] discussed
estimation and prediction for alpha-power Weibull distribution.
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4.1. Hybrid censoring description

A popular experimental design known as hybrid censoring terminates the test at
a predefined number of failures r or a specified time T . We consider n test units in
this investigation, whose lifetime items x1:n < x2:n < · · · < xn:n are distributed with
the PDF f (x;Ψ), where Ψ is a vector of unknown parameters. Three types of obser-
vations are feasible as a result of the experiment stopping at τ = min(T ;xr:n).
The observed lifetime under this censorship can therefore be classified as:

• Type-I censored: x1:n < x2:n < · · ·< xd:n, if d < r and xd:n < T < xd+1:n.

• Type- II censored: x1:n < x2:n < · · ·< xr:n, if xr:n < T .

• Complete sample: x1:n < z2:n < · · ·< xn:n, if xn:n < T and n = r.

Note that d represents the number of failures observed before the pre-specified time
T . The likelihood function for a censored hybrid sample x1:n < x2:n < · · · < xd:n,
following a distribution with PDF f (x;Ψ) and CDF F(x;Ψ), is defined as follows:

L(Ψ) ∝ [1−F(τ;Ψ)]n−d
d

∏
i=1

f (xi;Ψ). (14)

For further details regarding the hybrid censoring sample (see Balakrishnan and
Kundu [43]).

4.2. Maximum likelihood method

An effective technique for estimating the parameter Ψ, where Ψ = (α,θ ,λ )T , RF
and HRF of the IPB-XD is the ML estimation approach. Let x1,x2, ...,xn be a hybrid
censored sample observed form the PDF (6) and CDF (5), then the likelihood function
for the set of parameters and observed samples is determined based on equation (14)
as follows:

l(xxx |Ψ) = (2αθλ
2)n
[
1− e−λ 2τ−2θ

]α(n−d) n

∏
k=1

x−2θ−1
k

[
1− e−λ 2x−2θ

k

]α−1
e−λ 2x−2θ

k .

(15)
The logarithm of equation (15) is as follows:

l∗ ∝ n log(αθλ
2)+α(n−d) log

[
1− e−λ 2τ−2θ

]
+

n

∑
k=1

(α −1) log
[
1− e−λ 2x−2θ

k

]
−(2θ +1)

n

∑
k=1

logxk −λ
2

n

∑
k=1

x−2θ

k .

(16)
The MLEs α̂, θ̂ , and λ̂ are obtained after differentiating equation (16) with respect
to the parameters α,θ , and λ then equating them with zero
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∂ l∗

∂α
=

n
α
+(n−d) log

[
1− e−λ 2τ−2θ

]
+

n

∑
k=1

log
[
1− e−λ 2x−2θ

k

]
= 0,

∂ l∗

∂θ
=

n
θ
− 2α(n−d)λ 2τ−2θ logτ

eλ 2τ−2θ −1
− (α −1)

n

∑
k=1

x−2θ

k λ 2 logxk

eλ 2x−2θ

k −1

−2
n

∑
k=1

logxk +2λ
2

n

∑
k=1

x−2θ

k logxk = 0,

and

∂ l∗

∂λ
=

2n
λ

+
2λα(n−d)τ−2θ

eλ 2τ−2θ −1
+

n

∑
k=1

2(α −1)λx−2θ

k

eλ 2x−2θ

k −1
−2λ

n

∑
k=1

x−2θ

k = 0.

A strong and effective tool for computing the MLEs α̂, θ̂ , and λ̂ using the Newton-
-Raphson approach is the R’maxLik’ package. This software is commonly employed
in statistical analysis as it simplifies the ML estimation process.

Furthermore, the MLEs of RF and HRF represented by R̂ and Ĥ are obtained
based on the invariance property as mentioned below:

R̂ = 1− e−λ̂ 2t−2θ̂

,

and

Ĥ =
2α̂ θ̂ λ̂ 2t−2θ̂−1

eλ̂ 2t−2θ̂ −1
.

The ACI of parameters α,θ , and λ are created by using the asymptotic distribution
of MLEs α̂, θ̂ , and λ̂ . It is difficult to obtain the Fisher information matrix (FIM), so
its observed value is obtained I(Ψ) = Ii1,i2 =

[
∂

2l
∗
(Ψ)
/
(∂Ψi1∂Ψi2)

]
, i1, i2 = 1,2,3,

Ψ = (α,θ ,λ ), and I−1(Ψ) is the inverse of FIM.

Thus, the (1− ε)% ACIs for Ψ = (α,θ ,λ ), are given by Ψ̂±Zε/2

√
v̂ar(Ψ̂), where

Zε/2 denoted the upper (ε
/

2) percent point of standard normal distribution, where Zε/2

is the upper ε
/

2 quantile of N(0,1).
To construct ACIs for the RF and HRF, we need to estimate their variances. The delta
method, as described by Greene [44], provides an approximation for these variances.
The approximate variances of R̂ and Ĥ are calculated as follows:

var(R̂) = [δ1 R̂]T [I−1(Ψ)][δ1R̂], and var(Ĥ) = [δ2Ĥ]T [I−1(Ψ)][δ2Ĥ],

where δ1 R̂ =

(
∂R
∂α

,
∂R
∂θ

,
∂R
∂λ

)
, and δ2Ĥ =

(
∂H
∂α

,
∂H
∂θ

,
∂H
∂λ

)
.
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Thus, the two-sided 100(1− ε)% ACI of R̂ and Ĥ can be constructed as follows:

R̂±Zε/2

√
v̂ar(R̂), Ĥ ±Zε/2

√
v̂ar(Ĥ).

4.3. Maximum product spacing method

In some situations, the MPS technique offers multiple benefits over the typical
ML method, making it a strong substitute. The research conducted by Cheng and
Amin [45] offers significant understanding of the consistency and asymptotic char-
acteristics of MPS estimators (MPSEs). According to their research, MPSEs can
provide comparable or even better efficiency than MLEs, making them a viable
alternative.
Let x(1),x(2), ...,x(n) be an ordered random sample of size n drawn from the IPB-XD.
The uniform spacings are defined as the differences

Di(Ψ) = F
(
x(i);Ψ

)
−F

(
x(i−1);Ψ

)
, i = 1,2, ...,n+1,

where F
(
x(0);Ψ

)
= 0, F

(
x(n+1);Ψ

)
= 1, such that

n+1

∑
i=1

Di(Ψ) = 1.

For hybrid censored samples, the following is the general MPS expression

l1(Ψ) ∝ [1−F(τ;Ψ)]n−d
n+1

∏
i=1

[Di(Ψ)].

The MPSEs of IPB-XD parameters based on hybrid censored samples are obtained
by maximizing the following function:

ln l1(Ψ) = α(n−d) ln
[
1− e−λ 2τ−2θ

]
+

n+1

∑
i=1

ln
[[

1− e−λ 2x−2θ

(i−1)

]α

−
[
1− e−λ 2x−2θ

(i)

]α
]
.

(17)
The MPSE α̂1, θ̂1, and λ̂1 of the IPB-XD parameters be obtained by solving the non-
linear equations with respect to α,θ , and λ instead of using equation (17)

∂ ln l1(Ψ)

∂α
= (n−d) ln

[
1− e−λ 2τ−2θ

]
+

n+1

∑
i=1

[
1− e−λ 2x−2θ

(i−1)

]α

ln
[
1− e−λ 2x−2θ

(i−1)

]
−
[
1− e−λ 2x−2θ

(i)

]α

ln
[
1− e−λ 2x−2θ

(i)

]
[
1− e−λ 2x−2θ

(i−1)

]α

−
[
1− e−λ 2x−2θ

(i)

]α = 0,
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∂ ln l1(Ψ)

∂θ
=−2α(n−d)λ 2τ−2θ lnτ

eλ 2τ−2θ −1
−

n+1

∑
i=1

2αλ 2x−2θ

(i−1)e
−λ 2x−2θ

(i−1)

[
1− e−λ 2x−2θ

(i−1)

]α−1
lnx(i−1)[

1− e−λ 2x−2θ

(i−1)

]α

−
[
1− e−λ 2x−2θ

(i)

]α

+
n+1

∑
i=1

2αλ 2x−2θ

(i) e−λ 2x−2θ

(i)

[
1− e−λ 2x−2θ

(i)

]α−1
lnx(i)[

1− e−λ 2x−2θ

(i−1)

]α

−
[
1− e−λ 2x−2θ

(i)

]α = 0,

and

∂ ln l1(Ψ)

∂λ
=

2λα(n−d)τ−2θ

eλ 2τ−2θ −1

+
n+1

∑
i=1

2αλ

[
1− e−λ 2x−2θ

(i−1)

]α−1
x−2θ

(i−1)e
−λ 2x−2θ

(i−1) −2αλ

[
1− e−λ 2x−2θ

(i)

]α−1
x−2θ

(i) e−λ 2x−2θ

(i)[[
1− e−λ 2x−2θ

(i−1)

]α

−
[
1− e−λ 2x−2θ

(i)

]α
] = 0.

The MPSE R̂1(t) and Ĥ1(t) are obtained based on the invariance property as men-
tioned below:

R̂1(t) = 1− e−λ̂ 2
1 t−2θ̂1

,

and

Ĥ1(t) =
2α̂1 θ̂1 λ̂ 2

1 t−2θ̂1−1

eλ̂ 2
1 t−2θ̂1 −1

.

Furthermore, the MPS approach is used to generate the ACIs of the parameters
α,θ ,λ , RF and HRF. This procedure is comparable to the one outlined in the preced-
ing subsection, except that the MLEs are replaced with the MPSEs.

4.4. Bayesian estimation method

Here BEs for the IPB-XD’s parameters, R(t) and H(t) under hybrid censoring are
explored. This assumes that the parameters α,θ , and λ of the IPB-XD have indepen-
dent gamma prior distributions. That is α ∼ Gamma (c1,d1), θ ∼ Gamma (c2,d2),
and λ ∼ Gamma (c3,d3), then the joint prior of α,θ , and λ , is as follows:

A(Ψ) ∝ α
c1−1

θ
c2−1

λ
c3−1e−(d1α+d2θ+d3λ ), (18)

where, ci and di, i = 1,2,3 are the hyper-parameters. By combining the joint prior
given in equation (18) and the LF given in equation (15), we can derive the joint
posterior density function
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l
(

Ψ

∣∣∣∣xxx−
)

∝ α
c1+n−1

θ
c2+n−1

λ
c3+2n−1e−(d1α+d2θ+d3λ )

[
1− e−λ 2τ−2θ

]α(n−d)

×
n

∏
k=1

x−2θ−1
k

[
1− e−λ 2x−2θ

k

]α−1
e−λ 2x−2θ

k .

The marginal posterior densities of the α,θ , λ , RF and HRF are provided as
follows

l
(

α

∣∣∣∣λ ,θ ,xxx−
)

∝ α
c1+n−1e

−α

(
d1+

n
∑

k=1
ln
[

1−e−λ2x−2θ

k

]) [
1− e−λ 2τ−2θ

]α(n−d) n

∏
k=1

x−2θ−1
k e−λ 2x−2θ

k ,

(19)

l
(

θ

∣∣∣∣α,λ ,xxx
−

)
∝ θ

c2+n−1e
−(d2θ+

n
∑

k=1
λ 2x−2θ

k ) [
1− e−λ 2τ−2θ

]α(n−d) n

∏
k=1

x−2θ−1
k

[
1− e−λ 2x−2θ

k

]α−1
,

(20)

l
(

λ

∣∣∣∣α,θ ,xxx
−

)
∝ λ

c3+2n−1e
−(d3λ+

n
∑

k=1
λ 2x−2θ

k ) [
1− e−λ 2τ−2θ

]α(n−d) n

∏
k=1

[
1− e−λ 2x−2θ

k

]α−1
,

(21)

R1 ∝ α
c1+n−1

θ
c2+n−1

λ
c3+2n−1e−(d1α+d2θ+d3λ )

[
1− e−λ 2t−2θ

][
1− e−λ 2τ−2θ

]α(n−d)

×
n

∏
k=1

x−2θ−1
k

[
1− e−λ 2x−2θ

k

]α−1
e−λ 2x−2θ

k ,

(22)
and

H1 ∝ α
c1+n−1

θ
c2+n−1

λ
c3+2n−1e−(d1α+d2θ+d3λ ) 2α θ λ 2t−2θ−1

eλ 2t−2θ −1

[
1− e−λ 2τ−2θ

]α(n−d)

×
n

∏
k=1

x−2θ−1
k

[
1− e−λ 2x−2θ

k

]α−1
e−λ 2x−2θ

k .

(23)
Since there are no closed-form formulations for the marginal posterior densities

in equations (19)-(23), we shall produce samples for α,θ , λ , RF, and HRF using
the Metropolis-Hastings (M-H) algorithm with a normal proposal distribution.

The M-H algorithm is a Markov Chain Monte Carlo (MCMC) method used to
generate samples from a probability distribution, even when direct sampling is diffi-
cult. The algorithm proceeds as follows:
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• Initialize:

– Start with an initial value, which serves as the starting point of the chain.

– Define the target distribution l
(

Ψ

∣∣∣∣ttt−
)

from which we want to sample.

– Set the number of iterations I and the standard deviation σΨ for the
normal proposal distribution form Hessian matrix.

• Iterate for I steps:

– Generate a proposed value from a normal distribution centered at the
current value:

Ψ ∼ N (Ψ̂,σ2
Ψ).

– Compute the acceptance ratio R:

R = min

1,
l
(

Ψ(i)
∣∣∣∣ttt−
)

l
(

Ψ(i−1)

∣∣∣∣ttt−
)
 .

– Draw a random number u from a uniform distribution U(0,1).

– If u ≤ R, accept the proposed value Ψ as the next state: Ψ
(i+1) = Ψ

(i).

– Otherwise, retain the current state: Ψ
(i+1) = Ψ

(i).

• After completing all iterations, the chain of samples represents an approxima-
tion of the target distribution.

5. Simulation

In this section, we perform a simulation study to evaluate the performance of the
proposed methods. We begin by simulating hybrid censored data from the IPB-XD
for different values of n and r as follows:

• For n = 40, then r = 28,35,40.

• For n = 100, r = 75,85,100.

• For n = 150, r = 110,130,150.

The various actual parameters and hybrid censored sample time were changed
for each scenario as detailed below:
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• Table 1: α = 1.2,θ = 0.5,λ = 0.4, and T = 0.25,0.5,15.

• Table 2: α = 1.2,θ = 0.5,λ = 1.3, and T = 2,5,150.

• Table 3: α = 1.2,θ = 0.5,λ = 3, and T = 11,25,50.

• Table 4: α = 3,θ = 1.2,λ = 1.3, and T = 1,1.3,4.

In the simulation study, we compared the ML, MPS, and Bayesian (based on
the squared error loss function) estimation methods. Although direct comparison
between Bayesian and classical estimation methods (ML and MPS) is typically
challenging, we used the ML information to generate Bayesian estimates, enabling
comparison between ML and Bayesian estimates. Recent literature also discusses
such comparisons between ML and Bayesian estimates, as well as other estimation
methods.

The main difference between ML and Bayesian methods lies in the parameters
being treated as random variables with prior distributions. We used the gamma dis-
tribution as the prior, with shape and scale parameters (hyper-parameters). These
hyper-parameters were selected based on ML information and gamma distribution –
a process known as elicitation of hyper-parameters, as described by Dey et al. [46].

By setting α̂, θ̂ and λ̂ equal to the mean and variance of the gamma prior distri-
bution, we can determine their corresponding means and variances. This yields:

1
I

I

∑
j=1

α̂
j = c1d1 &

1
I −1

I

∑
j=1

(
α̂

j − 1
I

I

∑
j=1

α̂
j

)2

= c2
1d1,

1
I

I

∑
j=1

θ̂
j = c2d2 &

1
I −1

I

∑
j=1

(
θ̂

j − 1
I

I

∑
j=1

θ̂
j

)2

= c2
2d2,

1
I

I

∑
j=1

λ̂
j = c3d3 &

1
I −1

I

∑
j=1

(
λ̂

j − 1
I

I

∑
j=1

λ̂
j

)2

= c2
3d3,

where I is the total iteration of the simulation of MCMC method. Now, on solving
the above two equations for each hyper-parameter, the estimated hyper-parameters
can be written as:

c1 =

(1
I ∑

I
j=1 α̂ j

)2

1
I−1 ∑

I
j=1
(
α̂ j − 1

I ∑
I
j=1 α̂ j

)2 & d1 =
1

I−1 ∑
I
j=1
(
α̂ j − 1

I ∑
I
j=1 α̂ j

)2

1
I ∑

I
j=1 α̂ j

, (24)

c2 =

(1
I ∑

I
j=1 θ̂ j

)2

1
I−1 ∑

I
j=1
(
θ̂ j − 1

I ∑
I
j=1 θ̂ j

)2 & d2 =
1

I−1 ∑
I
j=1
(
θ̂ j − 1

I ∑
I
j=1 θ̂ j

)2

1
I ∑

I
j=1 θ̂ j

, (25)
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c3 =

(
1
I ∑

I
j=1 λ̂ j

)2

1
I−1 ∑

I
j=1

(
λ̂ j − 1

I ∑
I
j=1 λ̂ j

)2 & d3 =

1
I−1 ∑

I
j=1

(
λ̂ j − 1

I ∑
I
j=1 λ̂ j

)2

1
I ∑

I
j=1 λ̂ j

. (26)

Then, we calculate the ML and MPS estimates of α,θ and λ using the Newton-
-Raphson (NR) algorithm, and derive Bayesian estimates using the M-H algorithm
based on 10,000 Monte Carlo simulations. It’s worth mentioning that we used the R
programming language to generate the estimates for these calculations. We recom-
mend the use of the ’maxLik’ package, which provides classical estimates by apply-
ing the NR algorithm for numerical maximization (refer to [47]), and the ’CODA’
package, which simulates MCMC to produce Bayesian estimates (see [48]).

The performance of the ML, MPS, and Bayesian estimates was assessed using the
mean square error (MSE), the length of confidence intervals, RF, and HRF estimates
with T of the censoring scheme. For confidence intervals, the ACIs estimates for
ML and MPS were calculated, with their length referred to as L.ACI (see [49, 50]).
For Bayesian estimation, the credible confidence interval (L.CCI) was determined.
To identify the best estimation method, we selected the smallest MSE values and the
shortest confidence interval lengths.

From Tables 1-4, we can conclude the following:

• As the sample size n increases with fixed anther factors as r and T , the proposed
estimates of α,θ , and λ improve in terms of Bias, MSE, and length of intervals.

• The Bias, MSE, and LCI decrease as the sample size of the censored sample
(r) increases, indicating improved estimate performance.

• The Bias, MSE, and LCI decrease as the sample size of the censored sample
(T ) increases, indicating improved estimate performance.

• The decreasing Bias, MSE, and LCI with larger samples clearly demonstrate
the accuracy and consistency of the estimators.

• All three estimation methods perform well for the parameters of the IPB-XD.

• The Bayesian estimation method outperforms the other methods in accuracy.

• The LCCI for the Bayesian method is observed to be smaller compared to the
traditional LACI of ML and MPS methods, indicating greater precision.

6. Application of real data

We employed two real-world datasets to evaluate the effectiveness of the proposed
distribution. To do so, we applied various statistical analysis metrics, including the
Kolmogorov-Smirnov distance (KOSD) test with its associated p-value (KOSPV),
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Table 1. MLE, MPS, and Bayesian estimation methods for parameters and reliability analysis:
α = 1.2,θ = 0.5,λ = 0.4

α = 1.2,θ = 0.5,λ = 0.4 MLE MPS Bayesian
n T r Bias MSE LACI Bias MSE LACI Bias MSE LCCI

40

0.25 28

α -0.07369 0.07840 0.86470 0.05133 0.05128 0.46151 -0.00625 0.01662 0.48835
θ 0.04248 0.00690 0.31213 -0.05344 0.00575 0.32169 0.01639 0.00505 0.26632
λ -0.03959 0.00691 0.30224 0.05585 0.00598 0.24682 0.00221 0.00552 0.28796

RF -0.03794 0.00550 0.28838 0.04541 0.00539 0.26783 0.02611 0.00543 0.29082
HRF 0.05462 0.69777 3.16658 -0.05033 0.60504 3.29641 0.01293 0.53319 2.80573

0.50 35

α -0.06732 0.06145 0.84467 -0.04103 0.04842 0.44052 -0.00383 0.00978 0.39248
θ 0.04161 0.00500 0.26204 -0.03677 0.00410 0.27600 0.01513 0.00306 0.21171
λ -0.03530 0.00644 0.25669 0.03482 0.00405 0.21171 -0.00183 0.00323 0.22622

RF -0.03294 0.00264 0.19724 0.03486 0.00272 0.18053 0.02205 0.00252 0.19072
HRF 0.04734 0.13552 1.38107 -0.04160 0.11358 1.44180 0.01065 0.09637 1.21709

15 40

α -0.02243 0.05139 0.41883 -0.01826 0.01464 0.43711 0.00055 0.00376 0.23714
θ 0.04043 0.00460 0.24922 -0.03182 0.00341 0.25501 0.00780 0.00175 0.16081
λ -0.03097 0.00434 0.25403 0.02076 0.00370 0.21129 -0.00141 0.00180 0.16333

RF 0.03263 0.00097 0.01216 0.03255 0.00024 0.01458 0.01970 0.00001 0.00872
HRF 0.03857 0.00151 0.04633 -0.04097 0.00129 0.04818 0.00833 0.00006 0.03067

100

0.25 75

α 0.02550 0.05256 0.85743 0.04404 0.04648 0.41774 -0.00297 0.01457 0.45695
θ 0.01833 0.00372 0.23165 -0.03755 0.00321 0.23356 0.00876 0.00283 0.20854
λ -0.01434 0.00474 0.26627 0.05075 0.00443 0.21764 0.00315 0.00320 0.22466

RF -0.01192 0.00295 0.17023 0.00545 0.00190 0.16131 0.01063 0.00172 0.19082
HRF 0.03078 0.25156 1.81990 -0.01723 0.20987 1.92393 0.00236 0.20050 1.91102

0.50 85

α 0.02513 0.05061 0.82791 0.03636 0.04554 0.38179 -0.00211 0.00896 0.36397
θ 0.01008 0.00352 0.22700 -0.03585 0.00299 0.22192 0.00300 0.00191 0.16802
λ -0.00232 0.00451 0.23747 0.03165 0.00401 0.20214 0.00305 0.00226 0.18714

RF -0.01096 0.00162 0.13201 0.00480 0.00119 0.12523 0.01023 0.00115 0.15182
HRF 0.02956 0.06761 0.97913 -0.00713 0.06064 1.02268 -0.00236 0.06021 0.95450

15 100

α 0.01358 0.04613 0.40810 0.01686 0.01358 0.36924 -0.00083 0.00354 0.22531
θ 0.00910 0.00250 0.21688 -0.01748 0.00293 0.21372 0.00278 0.00108 0.12186
λ -0.00217 0.00348 0.20311 0.02024 0.00306 0.20086 -0.00303 0.00118 0.12925

RF 0.00786 0.00051 0.00877 0.00422 0.00007 0.00900 0.00618 0.00004 0.00720
HRF 0.02547 0.00103 0.03877 -0.00615 0.00090 0.03964 0.00165 0.00039 0.02365

150

0.25 110

α 0.01279 0.00319 0.16415 0.02039 0.00337 0.18306 -0.00093 0.00136 0.44039
θ 0.01700 0.00136 0.13659 -0.01815 0.00141 0.16086 0.00446 0.00129 0.16514
λ -0.01229 0.00133 0.13723 0.01935 0.00165 0.13689 0.00394 0.00122 0.17756

RF -0.01121 0.00129 0.13594 -0.00465 0.00122 0.12887 0.00947 0.00106 0.14795
HRF 0.03031 0.13897 1.36433 -0.00345 0.11639 1.44141 -0.00070 0.10283 1.64679

0.50 130

α 0.01189 0.00293 0.15982 0.02007 0.00335 0.16212 0.00093 0.00128 0.35449
θ 0.00916 0.00107 0.12246 -0.01802 0.00116 0.14503 0.00376 0.00104 0.14675
λ -0.00208 0.00109 0.12431 0.01816 0.00137 0.12525 -0.00333 0.00106 0.15391

RF -0.01040 0.00067 0.09591 -0.00412 0.00062 0.09020 0.00088 0.00062 0.11787
HRF 0.02312 0.03256 0.65245 0.00246 0.02684 0.68875 0.00061 0.02304 0.77724

15 150

α 0.00829 0.00284 0.13555 0.01072 0.00300 0.15380 -0.00065 0.00123 0.23006
θ 0.00293 0.00104 0.10244 -0.01250 0.00105 0.14059 0.00098 0.00090 0.11838
λ -0.00208 0.00084 0.11734 0.01720 0.00092 0.11636 0.00304 0.00071 0.12661

RF 0.00535 0.00000 0.00684 0.00216 0.00004 0.00684 0.00057 0.00000 0.00679
HRF 0.01349 0.00004 0.02352 -0.00137 0.00035 0.02503 -0.00038 0.00003 0.02230

Cramér-von Mises (CVOM), and Anderson-Darling (AnD) tests. Additionally, we
used several criteria, such as the Akaike information criterion (AkInC), and Bayesian
information criterion (BInC). The hybrid censored samples have also been checked
for two datasets. The IPB-XD distribution was compared with several distributions,
including PB-XD, sine-exponentiated Weibull exponential distribution (SEWED) by
[51], generalized inverse Weibull distribution (GIWD) by [52], exponentiated sine
Weibull distribution (ESWD) by [53], Burr III distribution (BIIID) by [1], inverse
power Lindley distribution (IPLD) [15], and generalized inverse power Sujatha
distribution (GIPSD) by [54].

6.1. Data I

The first dataset, originally from Gacula and Kubala [55], consists of 26 failure
time observations for a specific product. This dataset has also been referenced by
Elbatal et al. [56]. The recorded failure times are: 24, 24, 26, 26, 32, 32, 33, 33,
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Table 2. MLE, MPS, and Bayesian estimation methods for parameters and reliability analysis:
α = 1.2,θ = 0.5,λ = 1.3

α = 1.2,θ = 0.5,λ = 1.3 MLE MPS Bayesian
n T r Bias MSE LACI Bias MSE LACI Bias MSE LCCI

40

2 28

α -0.21118 0.53205 3.59440 0.15952 0.50532 2.49979 -0.00938 0.01569 0.47279
θ 0.48290 0.21558 1.51635 0.16621 0.09602 1.32711 0.01410 0.00761 0.33650
λ -0.14832 0.14738 1.37106 -0.07774 0.09648 1.10719 0.00315 0.00972 0.37770

RF 0.00674 0.00584 0.29521 0.02537 0.00547 0.27257 0.02863 0.00517 0.29175
HRF -0.02622 0.01182 0.42028 -0.09689 0.01063 0.40196 0.01781 0.00931 0.36562

5 35

α -0.14644 0.39102 2.38877 -0.02808 0.33477 2.10713 -0.00713 0.00870 0.36902
θ 0.40239 0.15573 1.30567 0.16579 0.07518 1.13973 0.00821 0.00437 0.26342
λ -0.11607 0.10654 1.18972 -0.06813 0.07545 0.98971 -0.00249 0.00583 0.29278

RF 0.00458 0.00352 0.22917 0.02061 0.00359 0.21275 0.01998 0.00306 0.20613
HRF -0.02590 0.00255 0.19421 -0.07704 0.00213 0.17834 0.00132 0.00122 0.13405

150 40

α -0.07445 0.30226 2.18978 -0.02723 0.26087 1.95510 -0.00253 0.00381 0.24000
θ 0.26778 0.09949 1.08659 0.15205 0.05849 0.95660 0.00742 0.00266 0.19282
λ -0.06189 0.06849 1.05246 -0.06074 0.05810 0.91797 -0.00233 0.00341 0.22099

RF 0.00438 0.00031 0.02059 0.01881 0.00055 0.02217 0.01690 0.00013 0.01106
HRF 0.00815 0.00040 0.00772 -0.07075 0.00032 0.00714 0.00126 0.00008 0.00348

100

2 75

α -0.06494 0.33374 2.23143 0.14060 0.35688 2.00271 -0.00733 0.01431 0.45800
θ 0.16803 0.04609 0.76109 -0.00536 0.02150 0.65895 0.01211 0.00380 0.23522
λ -0.06499 0.06011 0.95668 -0.00667 0.03880 0.74311 -0.00228 0.00492 0.26533

RF 0.00655 0.00210 0.17743 0.00996 0.00206 0.16962 -0.00372 0.00206 0.19528
HRF -0.01590 0.00508 0.27556 -0.03922 0.00446 0.26311 0.01289 0.00436 0.24838

5 85

α -0.05465 0.22219 2.13859 0.01638 0.20810 1.57866 -0.00685 0.00809 0.36067
θ 0.09270 0.02619 0.60582 -0.00508 0.01324 0.49831 0.00747 0.00207 0.17911
λ -0.04498 0.03809 0.83891 -0.00612 0.02709 0.63192 -0.00221 0.00398 0.25000

RF 0.00448 0.00149 0.14851 0.00829 0.00141 0.13838 0.00358 0.00140 0.14733
HRF -0.00829 0.00116 0.13166 -0.02752 0.00096 0.12143 0.00073 0.00056 0.09197

150 100

α -0.01015 0.17780 1.91150 0.01618 0.16370 1.53668 -0.00028 0.00359 0.23459
θ 0.07037 0.02147 0.53974 0.00424 0.01304 0.48951 0.00524 0.00154 0.14791
λ -0.02701 0.02810 0.75459 -0.00597 0.02350 0.61316 0.00161 0.00246 0.19892

RF 0.00416 0.00012 0.01335 0.00733 0.00015 0.01311 0.00327 0.00006 0.00859
HRF 0.00801 0.00019 0.00538 -0.02338 0.00016 0.00519 0.00126 0.00005 0.00253

150

2 110

α -0.04128 0.26446 1.17686 0.09929 0.10454 0.88303 -0.00100 0.01350 0.44689
θ -0.08179 0.03675 0.70241 -0.00508 0.00396 0.20189 0.00990 0.00248 0.19580
λ -0.02759 0.03259 0.88833 0.00516 0.00877 0.31429 0.00057 0.00385 0.24276

RF 0.00056 0.00012 0.00516 0.00934 0.00015 0.00413 0.00077 0.00004 0.00171
HRF 0.01451 0.00360 0.25733 -0.02700 0.00255 0.22117 0.00692 0.00247 0.19559

5 130

α -0.02072 0.16054 1.06547 0.01468 0.09169 0.80424 -0.00094 0.00804 0.36044
θ 0.06629 0.01481 0.44289 -0.00457 0.00292 0.19413 0.00611 0.00173 0.15419
λ -0.02489 0.02354 0.67138 -0.00411 0.00718 0.30511 -0.00042 0.00303 0.20798

RF -0.00051 0.00012 0.00402 0.00813 0.00013 0.00411 0.00034 0.00003 0.00125
HRF -0.00340 0.00078 0.10822 -0.01028 0.00069 0.10286 0.00045 0.00040 0.07823

150 150

α -0.00958 0.12084 1.05704 0.01348 0.07925 0.80125 -0.00021 0.00340 0.23060
θ 0.03852 0.01126 0.40512 0.00299 0.00184 0.18375 0.00429 0.00133 0.14339
λ -0.01387 0.01524 0.57000 -0.00312 0.00613 0.19454 -0.00041 0.00198 0.17197

RF 0.00277 0.00008 0.01075 0.00625 0.00009 0.01044 0.00180 0.00004 0.00770
HRF 0.00303 0.00013 0.00438 -0.01892 0.00011 0.00420 0.00094 0.00004 0.00231

33, 35, 41, 42, 43, 47, 48, 48, 48, 50, 52, 54, 55, 57, 57, 57, 57, and 61. The first
dataset consists of 26 discrete lifetime observations, with a total sum of 1115 and
a mean value of 42.88. The standard deviation is 11.84, indicating moderate disper-
sion around the mean. The median is 45, while the mode is 57, suggesting a slight
concentration toward higher values. The coefficient of variation (CV) is 0.276, re-
flecting relative variability. The skewness is –0.175, indicating a slight leftward asym-
metry, and the kurtosis is –1.322, suggesting a relatively flat distribution compared
to the normal distribution. Table 5 provides the ML estimate (MLE) with standard
errors (StEr), along with various metrics for evaluating the failure time data. The table
compares our model against several other distributions, such as PB-XD, SEWED,
APIWD, GIWD, ESWD, BIIID, IPLD, and GIPSD. The findings indicate that the
IPB-XD achieved the smallest values for the metrics AKInC, BInC, KOSD, CVOM,
and AnD, while the highest values were noted for KOSPV. These results suggest that
the IPB-XD was the most suitable model for fitting the failure time data. Figure 6
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Table 3. MLE, MPS, and Bayesian estimation methods for parameters and reliability analysis:
α = 1.2,θ = 0.5,λ = 3

α = 1.2,θ = 0.5,λ = 3 MLE MPS Bayesian
n T r Bias MSE LACI Bias MSE LACI Bias MSE LCCI

40

11 28

α -0.05931 0.22180 1.62847 0.03833 0.18747 1.65008 -0.00696 0.01718 0.51051
θ 0.13126 0.02169 0.52660 -0.04095 0.01355 0.52230 0.00724 0.00257 0.18642
λ 0.07061 0.36029 2.18186 -0.04351 0.22841 2.12401 -0.00388 0.01684 0.50342

RF -0.00956 0.00563 0.29061 0.01819 0.00544 0.27155 0.00162 0.00446 0.30826
HRF 0.06183 0.00342 0.07160 -0.07418 0.00309 0.07153 0.00421 0.00087 0.05133

25 35

α -0.05814 0.20544 1.60733 -0.01912 0.18641 1.62659 -0.00524 0.00977 0.37587
θ 0.12223 0.02027 0.49599 0.01717 0.01357 0.50436 0.00586 0.00188 0.16657
λ 0.06165 0.20111 1.57852 -0.03051 0.14397 1.70291 -0.00288 0.00885 0.36160

RF 0.00840 0.00367 0.23334 0.01666 0.00358 0.21560 0.00148 0.00307 0.23121
HRF -0.04406 0.00318 0.03536 -0.07327 0.00253 0.03381 0.00303 0.00029 0.02095

50 40

α 0.03681 0.20118 1.57771 -0.00827 0.16200 1.47942 0.00504 0.00393 0.23849
θ 0.07165 0.01583 0.46818 0.01620 0.01047 0.49717 0.00331 0.00132 0.14246
λ 0.05551 0.17176 1.46640 -0.02510 0.12722 1.59149 0.00050 0.00370 0.23943

RF 0.00821 0.00278 0.20228 0.01578 0.00057 0.02277 0.00141 0.00001 0.01113
HRF 0.04071 0.00142 0.01436 -0.05946 0.00116 0.01427 0.00289 0.00018 0.00053

100

11 75

α -0.04118 0.10827 1.22292 -0.03063 0.06684 0.96835 -0.00662 0.01581 0.49135
θ 0.10890 0.01729 0.46323 0.01074 0.00710 0.37698 0.00368 0.00142 0.14541
λ 0.03328 0.08918 1.08714 -0.02444 0.06842 1.14696 -0.00074 0.01514 0.47506

RF 0.00604 0.00211 0.17776 0.01701 0.00213 0.17004 0.00131 0.00205 0.18777
HRF -0.03068 0.00130 0.04345 -0.06782 0.00125 0.04217 -0.00415 0.00077 0.03403

25 85

α -0.02804 0.03679 0.78401 -0.01157 0.02867 0.67479 -0.00160 0.00878 0.36310
θ 0.02920 0.00399 0.23966 -0.00916 0.00286 0.22701 0.00250 0.00094 0.12253
λ 0.01539 0.04205 0.77251 -0.02269 0.04133 0.87942 -0.00038 0.00884 0.36330

RF 0.00579 0.00129 0.13881 0.01538 0.00138 0.13251 0.00124 0.00115 0.14696
HRF -0.00886 0.00023 0.01870 -0.04044 0.00021 0.01893 -0.00026 0.00013 0.01421

50 100

α 0.02016 0.03611 0.75091 -0.00721 0.02362 0.60774 -0.00049 0.00368 0.23148
θ 0.02011 0.00259 0.19328 -0.00812 0.00278 0.21479 0.00231 0.00069 0.10193
λ 0.01481 0.03686 0.71521 -0.01688 0.03764 0.83091 -0.00012 0.00349 0.22601

RF 0.00374 0.00071 0.09104 0.01427 0.00011 0.01078 0.00114 0.00004 0.00736
HRF 0.00715 0.00019 0.00739 -0.03202 0.00034 0.00077 0.00020 0.00013 0.00037

150

11 110

α 0.04066 0.09102 0.39303 0.01367 0.01060 0.37722 -0.00618 0.01004 0.41967
θ 0.05216 0.01151 0.13142 -0.00932 0.00148 0.15770 0.00265 0.00118 0.13663
λ 0.00683 0.03999 0.77012 -0.02249 0.04416 0.85886 -0.00062 0.01344 0.44253

RF -0.00189 0.00015 0.00061 0.00755 0.00031 0.14338 -0.00121 0.00011 0.15649
HRF 0.00477 0.00007 0.00632 -0.03060 0.00027 0.00063 0.00012 0.00002 0.00028

25 130

α 0.02401 0.01070 0.27015 0.00932 0.01027 0.30193 -0.00157 0.00692 0.35697
θ 0.02824 0.00278 0.12041 -0.00814 0.00120 0.14620 0.00207 0.00076 0.10929
λ 0.00610 0.03827 0.74969 -0.02127 0.03744 0.80063 -0.00030 0.00850 0.35597

RF -0.00172 0.00013 0.00051 0.00580 0.00018 0.10589 -0.00102 0.00009 0.11357
HRF 0.00281 0.00002 0.00516 -0.00462 0.00016 0.00042 0.00009 0.00001 0.00011

50 150

α 0.01519 0.00927 0.17023 0.00625 0.00932 0.29610 -0.00042 0.00356 0.23235
θ 0.01543 0.00244 0.11825 -0.00711 0.00102 0.12059 0.00201 0.00050 0.08707
λ 0.00515 0.03049 0.68397 -0.01180 0.03376 0.78177 -0.00010 0.00347 0.22272

RF 0.00130 0.00001 0.00050 0.00511 0.00001 0.00961 0.00100 0.00000 0.00623
HRF 0.00613 0.00001 0.00072 -0.01310 0.00033 0.00074 0.00013 0.00001 0.00032

supports these conclusions, which give the estimated PDF, CDF, PP-plot and
QQ-plot for the IPB-XD applied to the dataset I.

Table 6 compares three estimation methods: ML, MPS, and Bayesian for the
parameters (α , θ , and λ ) of the IPB-XD model based on hybrid-censored samples
from Data I. The table presents the parameter estimates, StEr, confidence intervals
(Lower and Upper bounds), and reliability measures (RF and HRF) for a different
censored time (T ). It shows how the estimates vary across methods and sample con-
figurations. Notably, the ML method tends to provide higher estimates for α , while
Bayesian estimation yields smaller StEr for some cases, indicating potentially greater
precision. The reliability measures (RF and HRF) suggest that certain methods may
perform better under different sample sizes and censoring scenarios.

Figure 7 illustrates MCMC plots for Data I under two scenarios: T = 18, r = 45,
and T = 18, r = 52. In both cases, the trace plots for each parameter (α , θ , and
λ ) display consistent oscillations, indicating effective chain mixing and convergence
during the iterations. The autocorrelation plots for each parameter decrease rapidly,
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Table 4. MLE, MPS, and Bayesian estimation methods for parameters and reliability analysis:
α = 3,θ = 1.2,λ = 1.3

α = 3,θ = 1.2,λ = 1.3 MLE MPS Bayesian
n T r Bias MSE LACI Bias MSE LACI Bias MSE LCCI

40

1 28

α -0.05673 0.59749 2.93218 0.01687 0.41268 2.30784 -0.00735 0.01893 0.53409
θ 0.10058 0.11559 1.24064 -0.05395 0.06347 1.12833 -0.00421 0.01464 0.48050
λ -0.03817 0.02567 0.65867 -0.03476 0.01345 0.45829 -0.00166 0.00581 0.28988

RF -0.01388 0.00554 0.28718 0.00907 0.00528 0.26820 -0.00256 0.00527 0.27697
HRF 0.05155 0.61971 3.00644 -0.07152 0.54499 3.09073 0.00312 0.25805 1.92744

1.3 35

α -0.04102 0.49076 2.39768 -0.01540 0.40677 1.97697 -0.00111 0.00971 0.39096
θ 0.09138 0.11399 1.13134 0.01766 0.06040 1.02173 -0.00165 0.00802 0.35313
λ -0.02457 0.02394 0.60875 -0.03179 0.01252 0.44628 0.00153 0.00462 0.26238

RF -0.01260 0.00294 0.20985 0.00860 0.00318 0.19694 0.00207 0.00217 0.17829
HRF 0.01326 0.51108 2.76920 -0.06594 0.46798 2.77004 -0.00251 0.16392 1.57863

4 40

α -0.04016 0.48725 2.25828 -0.01476 0.38861 1.61309 -0.00084 0.00411 0.25099
θ 0.08125 0.10369 1.03228 0.01443 0.05861 0.93144 -0.00158 0.00367 0.23263
λ -0.02154 0.02345 0.60098 -0.03055 0.01133 0.38384 0.00146 0.00264 0.20101

RF 0.01092 0.00241 0.09234 0.00849 0.00131 0.00347 0.00192 0.00120 0.00051
HRF -0.00265 0.13926 1.44585 -0.06424 0.14131 1.47955 -0.00203 0.01111 0.40910

100

1 75

α -0.01820 0.25414 1.87570 0.01498 0.25601 1.79798 0.00112 0.01729 0.49309
θ 0.02740 0.02918 0.65208 -0.04005 0.02461 0.65868 -0.00374 0.01120 0.41472
λ -0.01074 0.00684 0.38876 0.01045 0.00527 0.29366 0.00128 0.00271 0.20916

RF -0.00671 0.00211 0.17773 0.00462 0.00210 0.17089 0.00246 0.00203 0.18609
HRF 0.01903 0.21479 1.78143 -0.04130 0.21741 1.91845 -0.00306 0.15835 1.53493

1.3 85

α -0.01725 0.23662 1.81208 0.01361 0.23607 1.60537 -0.00107 0.00928 0.38375
θ 0.02471 0.02423 0.60772 -0.01760 0.02300 0.74522 0.00123 0.00623 0.30573
λ -0.01024 0.00617 0.30553 -0.00630 0.00510 0.19486 -0.00102 0.00213 0.18124

RF -0.00590 0.00128 0.13900 0.00373 0.00137 0.13401 0.00187 0.00114 0.13011
HRF 0.00435 0.20189 1.68085 -0.02988 0.21944 1.88109 0.00075 0.11681 1.30890

4 100

α 0.01030 0.21418 1.04228 0.01211 0.20812 1.50721 0.00019 0.00363 0.23577
θ 0.02352 0.02035 0.58716 -0.01069 0.02093 0.74711 0.00112 0.00314 0.22210
λ -0.00789 0.00515 0.30507 -0.00500 0.00495 0.18350 0.00055 0.00169 0.16204

RF 0.00349 0.00077 0.00911 0.00061 0.00018 0.00333 0.00130 0.00018 0.00043
HRF 0.00202 0.08966 1.14911 -0.02882 0.08517 1.19518 0.00061 0.00927 0.36662

150

1 110

α -0.01542 0.23439 1.73263 -0.01488 0.23066 1.60470 0.00023 0.01711 0.45119
θ 0.02516 0.02033 0.62706 -0.00928 0.02061 0.62758 0.00349 0.01109 0.38420
λ -0.01003 0.00510 0.32044 -0.00972 0.00507 0.23528 0.00108 0.00189 0.15983

RF -0.00316 0.00138 0.14447 0.00410 0.00134 0.13751 0.00204 0.00126 0.15172
HRF 0.01017 0.15136 1.50420 -0.03216 0.13787 1.51973 0.00237 0.13843 1.43065

1.3 130

α -0.01538 0.05130 0.98182 0.00511 0.04635 0.81588 -0.00010 0.00910 0.36993
θ 0.01132 0.00734 0.32762 -0.00233 0.00747 0.35832 -0.00093 0.00547 0.28307
λ -0.00523 0.00189 0.18773 0.00104 0.00176 0.15699 0.00100 0.00149 0.15299

RF 0.00210 0.00083 0.11123 0.00341 0.00086 0.10528 0.00172 0.00082 0.11762
HRF 0.00123 0.11386 1.30555 -0.02934 0.11319 1.35938 -0.00061 0.10036 1.20257

4 150

α -0.00850 0.04858 0.81554 -0.00481 0.03623 0.71357 0.00010 0.00319 0.22412
θ 0.01062 0.00722 0.31365 -0.00210 0.00746 0.32625 0.00005 0.00308 0.20946
λ -0.00430 0.00159 0.17202 -0.00101 0.00155 0.14999 -0.00045 0.00136 0.14419

RF 0.00107 0.00008 0.00586 0.00045 0.00004 0.00066 0.00126 0.00001 0.00391
HRF 0.00092 0.02169 0.57035 -0.02645 0.02193 0.60631 0.00006 0.00880 0.35971

reflecting minimal autocorrelation between successive samples, which is favorable
for parameter estimation accuracy. The posterior density plots exhibit well-defined
peaks, indicating the presence of reliable parameter estimates. In the second scenario
(r = 52), the posterior distributions tend to be slightly broader compared to r = 45,
suggesting increased variability and lower precision in the parameter estimates due
to the higher censoring level. Overall, the plots effectively convey the convergence
and mixing quality of the MCMC chains under different censoring conditions.

6.2. Data II

The dataset focuses on daily rainfall patterns across Peninsular Malaysia from
1975 to 2004, examining the influence of the southwest and northeast monsoons.
These monsoons significantly affect the region’s climate, causing distinct seasonal
variations in rainfall. The data, which include rainfall intensity measurements at dif-
ferent stations, helps identify spatial and temporal trends over the 30-year period,
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Table 5. MLE for IPB-XD and alternative models for Data I

α θ λ δ AkInC BInC KOSD KOSPV CVOM AnD

IPB-XD Estimates 7934.2758 0.2257 7.1312 206.8628 210.6371 0.1490 0.6109 0.1104 0.7088StEr 17059.23 0.0613 1.0842

PB-XD Estimates 0.8900 0.0001 2.2935 206.9624 210.8367 0.1523 0.5823 0.1197 0.7264StEr 0.1537 0.0001 0.6156

SEWED Estimates 1.6750 0.0647 0.0347 1.0561 209.1988 214.2312 0.1590 0.5266 0.1295 0.7366StEr 2.0660 0.0215 0.1212 0.3151

GIWD Estimates 15.4371 16.9912 3.4156 214.4336 215.5245 0.1845 0.3388 0.2019 1.2680StEr 3.5156 5.0217 0.4999

ESWD Estimates 12.9867 1.2002 0.0182 209.5333 213.3076 0.1722 0.4236 0.1447 0.9041StEr 8.0697 0.1794 0.0149

BIIID Estimates 1.4782 184.4718 235.0138 237.5300 0.3449 0.0041 0.1647 1.0299StEr 0.1279 79.0043

IPLD Estimates 3.4147 194391.9 212.4336 214.9498 0.1844 0.3397 0.2018 1.2679StEr 0.0521 151.1652

GIPSD Estimates 2.0823 0.0073 80009261 240.5387 244.3130 0.2603 0.0591 0.1753 1.0977StEr 0.2002 0.0017 1677.2
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Fig. 6. Plots of Data I and IPB-XD

see [57]. This study uses indices such as total daily rainfall and rainfall frequency to
analyze changes and trends. For example, values like 1.47, 1.63, and up to 2.29 repre-
sent varying rainfall intensities at different times, showing both regular rainfall events
and extreme occurrences. The trends can provide insights into how rainfall patterns
are shifting, possibly due to climate change, and inform water resource management
and agricultural planning in the region. The data are as follows: 1.47, 1.63, 1.63,
4.94, 5.32, 5.97, 1.76, 1.87, 1.88, 5.38, 5.48, 5.42, 1.92, 2.02, 2.25, 2.27, 2.29, 2.45,
2.59, 3.17, 3.56, 3.78, 3.90, 4.23, 4.76, 6.17, 2.53, 2.74, 3.08, 3.10, 3.12, 3.16, 3.24,
3.27, 3.73, 4.05, 4.22, 4.45, 4.57, 4.88, 4.98, 5.05, 5.14, 5.30, 5.56, 6.20, 6.24, 6.45,
6.51, 6.54. The second dataset comprises 50 continuous observations, with a total
sum of 196.22 and a mean of 3.92. The standard deviation is 1.55, and the median is
3.84, close to the mean, indicating symmetry. The mode is 1.63. The coefficient of
variation is higher at 0.394, showing greater relative variability than the first dataset.
The skewness is 0.081, indicating near symmetry, and the kurtosis is –1.241, also
pointing to a flatter distribution than the normal curve.

Table 7 presents the MLE for parameters of the IPB-XD and various alternative
models applied to Data II. The models compared include IPB-XD, PB-XD, SEWED,
APIWD, GIWD, BIIID, IPLD, and GIPSD. The table lists the parameter estimates
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Table 6. ML, MPS, and Bayesian estimation methods for parameters of IPB-XD based on hybrid
censored samples: Data I

T r Estimates StEr Lower Upper RF HRF

18

45

ML
α 7933.86655 1676.92290 4647.09766 11220.63543

0.48120 0.05449θ 0.18038 0.00416 0.17223 0.18853
λ 6.05699 0.03791 5.98269 6.13128

MPS
α 7934.07740 3.81988 7926.59043 7941.56438

0.49910 0.04584θ 0.15886 0.00186 0.15522 0.16250
λ 5.59588 0.03377 5.52969 5.66207

Bayesian
α 7916.05713 1685.37308 4586.58902 11099.01894

0.42194 0.07897θ 0.22566 0.00042 0.22483 0.22645
λ 7.13112 0.03794 7.05391 7.20271

52

ML
α 7932.15819 494.04091 6963.83800 8900.47837

0.29632 0.07592θ 0.18476 0.00167 0.18148 0.18804
λ 6.14989 0.02818 6.09465 6.20513

MPS
α 7934.71496 3.06767 7928.70232 7940.72760

0.31814 0.06515θ 0.16724 0.00136 0.16457 0.16991
λ 5.75834 0.02488 5.70958 5.80710

Bayesian
α 7929.40048 496.16220 6948.00852 8866.64581

0.21470 0.11415θ 0.22566 0.00017 0.22533 0.22598
λ 7.13112 0.02820 7.07373 7.18436
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Fig. 7. MCMC plots of Data I

along with their StEr, providing a measure of precision for each estimate. The table
also features model comparison criteria, including AkInC, BInC, KOSD, KOSPV,
CVOM, and AnD. The results suggest variations in the fit quality across models,
with lower AkInC and BInC values generally indicating better model fit. The IPB-XD
model exhibits competitive fit measures compared to other models, particularly with
relatively low KOSD and CVOM values, suggesting it performs well for Data II.
However, some models show lower goodness-of-fit statistics in specific criteria, in-
dicating that the choice of the best model may depend on the criteria prioritized for
evaluation. Figure 8 supports these conclusions, which give the estimated PDF, CDF,
PP-plot and QQ-plot for the IPB-XD applied to the Dataset II.

Table 8 compares three estimation methods: ML, MPS, and Bayesian with non-
informative prior-for the parameters (α , θ , and λ ) of the IPB-XD model based on
hybrid-censored samples from Data II. The table provides parameter estimates, StEr,
and confidence intervals (Lower and Upper bounds) for different levels of censoring
(r) and censored time (T ). Additionally, it includes reliability measures (RF and
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Table 7. MLE for IPB-XD and alternative models for Data II

α θ λ δ AkInC BInC KOSD KOSPV CVOM AnD

IPB-XD Estimates 12921.84 0.1430 3.7944 188.5030 194.2391 0.1064 0.6237 0.1049 0.7077StEr 12.8475 0.0206 0.1503

PB-XD Estimates 0.2708 0.0015 3.6714 188.6632 194.3993 0.1248 0.4176 0.1094 0.7166StEr 0.0372 0.0005 0.8516

SEWED Estimates 0.0915 18.2669 2.0184 0.0978 188.7146 195.7943 0.1178 0.4913 0.1098 0.7270StEr 0.0109 0.0034 0.0024 0.0028

GIWD Estimates 2.8476 1.0245 2.3191 201.7688 202.2905 0.1384 0.2936 0.2721 1.6870StEr 150.266 125.371 0.2441

BIIID Estimates 2.4123 13.6165 199.0877 202.9117 0.1358 0.3148 0.2586 1.6146StEr 0.2361 3.2301

IPLD Estimates 2.3138 12.4111 199.8275 203.6516 0.1470 0.2302 0.2697 1.6739StEr 0.2459 2.9387

GIPSD Estimates 2.1197 0.0138 6292575 208.4476 214.1836 0.1497 0.2123 0.2877 1.7702StEr 0.2516 0.0013 315.0265
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Fig. 8. Plots of Data II and IPB-XD

HRF) for each estimation method under different configurations. The table shows
variations in parameter estimates and precision across methods, with Bayesian
estimation often producing smaller standard errors, suggesting higher estimation
accuracy in some cases. The MPS method typically shows intermediate performance,
while the ML method offers wider confidence intervals. The reliability measures (RF
and HRF) indicate differences in the performance of the estimation methods under
varying censoring levels, helping to identify the most suitable approach for analyzing
censored data.

Figure 9 presents MCMC plots for the parameters of Data II under two scenarios:
r = 40, T = 3.8, and r = 40, T = 4.5. In both cases, the trace plots show stable
fluctuations, indicating that the MCMC chains have achieved good mixing, while the
autocorrelation plots decrease rapidly, reflecting minimal correlation between con-
secutive samples. The posterior density plots exhibit distinct peaks, suggesting well-
defined parameter estimates. However, for T = 4.5, the posterior distributions appear
slightly broader compared to T = 3.8, implying greater uncertainty in parameter
estimates. This difference highlights the influence of sample size and censoring levels
on the precision of the Bayesian estimation.
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Table 8. ML, MPS, and Bayesian estimation methods for parameters of IPB-XD based on hybrid
censored samples: Data II

r T Estimates StEr Lower Upper RF HRF

40

3.8

ML
α 0.20020 0.09663 0.01081 0.38958

0.50820 0.24399θ 2.35616 0.81296 0.76277 3.94956
λ 4.32135 1.26104 1.84972 6.79298

MPS
α 0.37421 0.16667 0.04754 0.70088

0.51257 0.25861θ 1.44124 0.39378 0.66943 2.21305
λ 2.93371 0.32864 2.28958 3.57784

Bayesian
α 49.93850 0.09710 49.74671 50.12196

0.48523 0.52356θ 0.32193 0.08170 0.16057 0.47628
λ 3.16551 1.24930 0.59675 5.51339

4.5

ML
α 0.33760 0.14319 0.05694 0.61825

0.40948 0.24641θ 1.70429 0.47615 0.77103 2.63755
λ 3.52296 0.59317 2.36034 4.68557

MPS
α 0.54149 0.21513 0.11984 0.96314

0.41498 0.25567θ 1.18796 0.27610 0.64680 1.72912
λ 2.79694 0.21945 2.36682 3.22706

Bayesian
α 49.93798 0.14390 49.65375 50.20984

0.31950 0.62666θ 0.32232 0.04785 0.22781 0.41272
λ 3.16141 0.59348 1.95307 4.28080

46 5.2

ML
α 1.93916 0.91126 0.15308 3.72523

0.27788 0.36784θ 0.72513 0.14819 0.43467 1.01558
λ 2.81820 0.09739 2.62732 3.00908

MPS
α 3.29888 1.67328 0.01925 6.57851

0.28542 0.37244θ 0.55135 0.10632 0.34297 0.75973
λ 2.66310 0.05395 2.55736 2.76885

Bayesian
α 49.92972 0.91555 48.12043 51.65937

0.19969 0.70107θ 0.32271 0.01489 0.29328 0.35083
λ 3.16203 0.09745 2.96363 3.34580
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Fig. 9. MCMC plots of Data II

7. Concluding remarks

This paper introduces a novel three-parameter extension of the PB-XD, derived
through the inverse transformation technique. The resulting IP-BXD offers a ver-
satile framework for modeling non-monotonic behaviors, as it can effectively cap-
ture decreasing, increasing, and bathtub-shaped patterns in lifetime data. We pro-
vide explicit expressions for key statistical properties, including ordinary moments,
QF, incomplete and conditional moments, MRL, and MIT. Additionally, the IP-BXD
demonstrates its practical utility in statistical applications through a comprehensive
analysis of estimation methods, such as ML and MPS, under complete and hybrid
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censoring schemes. Moreover, we delve into the Bayesian estimation framework, em-
ploying an informative gamma prior under the squared error loss function. Bayesian
credible intervals and ACIs derived from the normal approximation are constructed.
A comprehensive Monte Carlo simulation study evaluates the performance of various
estimates based on multiple accuracy metrics. To demonstrate the practical utility and
versatility of the proposed model, we analyze three real-world datasets and compare
its performance against several competing distributions. In addition, we illustrate the
application of the proposed methods to real-world scenarios using these data sets.
This work is limited to the use of the Bayesian estimating method within MCMC
when the loss function is symmetric. Future research can examine how asymmet-
ric loss functions are used in Bayesian estimation. This would offer a more adapt-
able framework because overestimation and underestimation frequently carry distinct
consequences in real-world situations. Furthermore, for computing conditional pos-
teriors, the Tierney-Kadane approximation approach could be used as a productive
substitute for computationally demanding MCMC methods.
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