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Abstract. This paper presents the results of extensive numerical simulations using the fiber
bundle model to investigate the effect of cyclic subcritical preloading of pillar arrays, in
which failed elements are replaced after each loading cycle. The actual critical loading is
applied after the cycling process. The preloading-replacement procedure alters the array’s
response from gradual failure under increasing load to abrupt failure. Consequently, after the
cycling process, the onset of local failure inevitably triggers a global failure. Although the
system’s behavior becomes perfectly brittle, this approach allows for significant strengthen-
ing to be achieved in systems with at least moderate disorder.
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1. Introduction

Failure in disordered materials is a complex phenomenon that attracts much
attention in the communities of physicists, engineers, and material scientists [1, 2].
Fracture in disordered materials occurs through the initiation, growth, coalescence
and propagation of micro-cracks, ultimately leading to macroscopic failure of the
material [3]. At the nanometer scale, atomic displacement and defect motion can
initiate irreversible deformation. While micro- and nanomaterials exhibit enhanced
strength and toughness, they are also characterized by sample-to-sample fluctuations
and non-trivial size effects [4]. Examples of materials at the micro/nanometer scale
are arrays of micro/nanopillars, which can be considered as multi-component systems
consisting of nearly identical elements. The applications and potential applications of
micro/nanopillar arrays cover, for example, optical devices, sensors, energy genera-
tion devices, artificial retinas, cellular biomechanics, and tissue engineering [5, 6].

One of the statistical mechanical models of fracture is the fiber bundle model
(FBM) [7]. In the classical version of this model, a set of fibers is subjected to
a tensile load. The dynamics of the model is guided by the two parameters: amount of
strength disorder of the system’s elements and the range of stress redistribution after
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an element’s failure [8]. The interplay between quenched heterogeneites (in strength
thresholds) and local stress concentrations that arise during the failure process is
a complex phenomenon. Therefore, the systems show different failure modes, like
nucleation, avalanche, or percolation. When the range of stress redistribution is very
short, the failure process proceeds in the form of nucleation unless the amount of
disorder is high. In this scenario, due to local stress concentration, we observe the
growth of a single dominant cluster of broken fibers that consumes all other clusters.
On the contrary, when the range of stress redistribution is high, the fracture process
is in a percolation mode, local failures are uncorrelated and random in space [8-10].
These two behaviors are associated with two opposite and limiting load transfer rules,
namely local load sharing (LLS) and global load sharing (GLS). Other intermediate
load transfer rules have also been proposed and analyzed, such as the range-variable
model [11, 12] or the R model [13-15].

Nucleation and percolation are two distinct failure modes that describe the inter-
nal propagation of damage within a system. These failure modes are often linked
to the macroscopic response of the system, specifically the brittle and quasi-brittle
phases [16-20]. In the case of purely brittle behavior, the global failure is triggered
by the failure of the weakest element of the system. As a result, there is no stable
state in this regime, and failure occurs abruptly. In the quasi-brittle scenario, by con-
trast, catastrophic collapse does not occur immediately. Failure of the entire system
is preceded by a series of stable states at increasing load levels, and the system under-
goes catastrophic collapse in an avalanche-like manner. A transition between brittle
and quasi-brittle depends on the amount of strength disorder. As the amount of disor-
der is gradually increased, a transition occurs from the perfectly brittle phase to the
quasi-brittle phase [16].

In this work, we apply the fiber bundle model approach to simulate arrays of
(nano)pillars subjected to axial compression [21, 22]. In work [21], we have numer-
ically studied the effect of optimally tailored cyclic preloading, assuming that pillar
strength thresholds are not quenched. However, this study is a direct continuation
of our previous study [23], where we analyzed the influence of eliminating a frac-
tion of the system’s elements before the actual critical loading. Here, we assume
that the pillar strength thresholds are quenched, and a series of subcritical preload-
ings (each followed by the replacement of failed elements with new ones) is applied
until the brittle phase is reached. The effect of substitution was previously studied in
work [24], where a small portion of fibers of one type had been replaced by another
type of fibers that were stronger than the original ones. In turn, in [25], the authors
analyze failure processes in systems consisting of two types of fibers: breakable and
unbreakable. Instead, we adopt a different approach in this study: elements that fail
during subcritical preloading are replaced with nearly identical ones, whose strength
thresholds are drawn from the same probability distribution as those of the original
pillars in the system.
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2. Arrays of pillars under two-stage loading

The system under consideration is composed of N = L×L almost identical pil-
lars, which are geometrically arranged at the nodes of a square grid and subjected to
axial loading. Under load, each pillar can be in one of two states: intact or crushed.
Failure of the pillar occurs when the applied load exceeds its strength threshold σ

i
th,

i = 1,2, . . . ,N. Indeed, the distribution of pillar strength thresholds is the only pa-
rameter that controls the disorder in the system. Therefore, the strength threshold is
the sole difference between system components. In this work, we employ two types
of distributions to randomly generate pillar strength thresholds: the uniform distribu-
tion (on the interval [0, 1]) and the Weibull distribution. The cumulative distribution
function of the latter is given by

P(σth) = 1− exp
[
−
(

σth

λ

)ρ
]

(1)

where ρ and λ are shape and scale parameters, respectively. The parameter ρ (also
known as the Weibull index) governs the amount of disorder in the system – the
higher the value of the parameter, the lower the disorder of the pillar strength thresh-
olds. The scale parameter is set to λ = 1. The Weibull distribution has a much stronger
physical foundation than the uniform distribution and is commonly employed to
model the stochastic failure characteristics of components in fracture phenomena,
spanning length scales from the nanometer scale to that of earthquakes, by adjusting
the Weibull index [26].

The loading procedure is carried out in a quasi-static manner. The complete real-
isation of this process is performed as follows. The initial external load, F , is set to
0. Then, the external load is uniformly increased on all intact pillars by an amount
δF , sufficient to cause the failure of a single pillar. After the failure of the pillar,
the increase of external load is stopped, and the load is redistributed from the failed
pillar to the intact ones, according to a given load transfer rule. The load transfer may
provoke the next failures and is repeated until a stable state is reached, i.e., when
the load transfer no longer causes further failures. Then, the external load is uni-
formly increased again by an amount sufficient to destroy a single intact pillar. This
process continues until the complete failure of the system under the critical load Fc.
The number of pillars destroyed between two consecutive load increments is called
an avalanche (∆). The total number of avalanches during the entire process can be
seen as the failure time of the system, t f . The load Fc is associated with the ulti-
mate strength of the system, and the avalanche triggered by Fc is referred to as the
catastrophic avalanche.

The range of load transfer can be modeled using an appropriate load transfer rule.
The shortest possible range of load transfer is represented by the LLS rule. In this
scheme, only the nearest surviving neighbors of the crushed pillar take on an addi-
tional load. The rule that neglects the distance between the crushed pillar and the
intact ones is the GLS rule. In this case, the load from the failed pillar is equally
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transferred to all intact pillars in the system, regardless of their distance from the bro-
ken element – all pillars in the system are considered equidistant in the mathematical
sense. Hence, this rule constitutes a mean-field approximation. The rule that interpo-
lates between the extreme cases is the so-called range variable (RV) rule. The load
∆qi→ j allocated to the j-th intact pillar is expressed as:

∆qi→ j =
Zi

|r j − ri|γ
∆Qi (2)

where ∆Qi is the load of the failed i-th pillar, |r j − ri| is the distance between the j-th
intact pillar and the i-th crushed one, γ is a parameter, and Zi is a normalization factor
that guarantees the load conservation. By tuning γ , we can transition from the GLS
rule (γ = 0) to LLS rule (γ → ∞).

Our simulation-based experiment is divided into two stages. The first stage in-
volves cyclic subcritical preloading followed by the replacement of crushed compo-
nents with intact ones after each cycle. Hence, each preloading-replacement cycle
results in a structural repair of the array. The strength thresholds of the newly in-
serted pillars follow the same distribution as the thresholds of the initial components.
Each cycle ends at the time step t f −1, just before the occurrence of the catastrophic
avalanche, and lasts up to the load Fsub, which directly precedes the critical load
Fc. Therefore, Fsub is the last load for which the system remains in a pre-critical
state. The number of cycles (η) is a random variable, as cycling ends when Fsub = 0,
i.e., at the cycle where the system becomes so unstable that the failure of a single
component (microscopic failure) inevitably results in a self-sustaining catastrophic
avalanche, causing total system collapse (macroscopic failure). Let t f (i) denote the
failure time of the system after i-th cycle, where i = 0,1, . . . ,η (with i = 0 referring
to no preloading). The failure time is defined as the number of avalanches occur-
ring during the entire critical loading process. We observe N ≥ t f (0) ≥ t f (η) = 1,
which means that the system transitions from quasi-brittle behavior to perfectly brit-
tle behavior as a result of the cyclic preloading-replacement process. The equality
t f (0) = t f (η) holds only in the case when the initial system is already purely brittle.
On the other hand, equality t f (0) = N occurs exclusively if the array undergoes com-
plete destruction through a sequence of single-element avalanches. It is noted that,
due to the quasi-static nature of the loading process, we consider only values of F
that trigger successive avalanches, with F = 0 being the initial load. Consequently,
Fsub = 0 after the η-th cycle, as previously mentioned.

The second stage focuses on the critical loading of the system that has previously
undergone the cycling process described above. It is noted that at the beginning of the
critical loading, all nodes in the grid are occupied by intact components. However,
due to the replacements made during the first stage of the experiment, the distribu-
tion of pillar strength thresholds differs from the initial one. To compare arrays of
different sizes, the critical load is scaled by the system size as σc = Fc/N. In prac-
tice, we have performed simulations of critical loading for each system after every
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preloading-replacement cycle, including the case without any preloading cycles. This
allows us to obtain a sequence σc (0) ,σc (1) , . . . ,σc (η) where σc (i) denotes the crit-
ical load after i-th preloading-replacement cycle, with i = 0,1, . . . ,η . The final value
in the sequence, σc(η), corresponds to the ultimate load-bearing capacity of the sys-
tem after all cycles have been completed. Accordingly, the ratio ϕ = σc(η)/σc(0)
serves as a measure of the system’s strengthening induced by the full sequence of
preloading-replacement cycles.

3. Simulation results and discussion

Based on the model described in the previous section, we have implemented
a Python code to simulate two-stage loading processes in the pillar arrays. First, for
each analyzed system size, we generated and stored M = 104 configurations of initial
threshold sets, denoted as

{
σ

i
th (0)

}N
i=1, where each set contains N threshold values

assigned to the array’s elements. We conducted simulations across a broad range of
system sizes, ranging from N = 40× 40 to N = 500× 500 for the LLS rule, and
N = 1000×1000 for the GLS rule. In the case of the RV rule, due to its higher com-
putational cost, we restricted the simulations to two system sizes, namely N = 60×60
and N = 100×100. To gain a detailed understanding of the effect of the load transfer
range, we have varied the value of γ from 0 (pure GLS) to 10, which is close to the
behavior of the LLS rule. To investigate the influence of disorder in pillar strength
thresholds, we have examined a uniform distribution on the interval [0,1], as well as
a Weibull distribution with ρ = 2,3,4, . . . ,10,12. This allows us to explore a range of
disorder levels, from relatively higher disorder (uniform distribution, ρ = 2) to rela-
tively lower disorder (ρ = 10, ρ = 12). Averages were calculated over M samples.

Before analyzing the actual simulation results, a natural question arises: which
components are destroyed during the preloading phase? In systems with long-range
interactions (GLS-like behavior), the damage pattern is spatially random (percolation-
like), meaning that primarily the weakest components fail. In contrast, in systems
governed by short-range interactions (LLS-like behavior), damage tends to localize
into clusters. In such cases, the failure of a component is influenced not only by its
intrinsic strength but also by its spatial location within the array. Consequently, fail-
ure affects not only the weakest elements but also some stronger ones that are located
in locally weak regions.

After each preloading cycle, the crushed components (typically the weakest ones)
are replaced with new ones, whose strength thresholds are sampled from the same
distribution as those of the initial components. This iterative preloading-replacement
process inevitably leads to an enhancement of the system’s load-bearing capacity,
such that σc(0) < σc(1) < .. . < σc(η). Thus, by completing the cycling process,
we can determine the upper limit of σc for an array whose initial pillar strength
thresholds are sampled from a given distribution and which is subsequently sub-
jected to a cyclic preloading-replacement procedure that transforms the system’s
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response from quasi-brittle to perfectly brittle behavior. It should be noted that
σc(η) = min

({
σ

i
th (η)

}N
i=1

)
.
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Fig. 1. (a) Mean critical load ⟨σc⟩ after i-th cycle (see legend) as a function of the linear system size L.
Data points correspond to LLS systems with initially uniformly distributed strength thresholds. Solid

lines are drawn according to equation (3), with parameters computed from the samples. The inset
shows the mean strengthening of these LLS systems after completing the full cycling process.
(b) Empirical distribution of σc for LLS systems with N = 500×500 and an initially uniform
distribution of strength thresholds. The solid lines represent a skew-normal distribution fitted

to the data

Figure 1a shows the empirical mean critical loads for LLS systems with initially
uniform strength thresholds. The data presented in the figure refers to the mean crit-
ical loads after the i-th cycle, as well as the results after the complete preloading-
replacement procedure. It is seen that the effect of each subsequent preloading-
-replacement cycle is weaker than that of the previous one. This indicates that the
most significant strengthening occurs during the initial cycles, after which the sys-
tem continues to gain strength with each subsequent cycle, albeit at a diminishing
rate, eventually approaching a state of perfectly brittle behavior. Qualitatively simi-
lar behavior is observed for the GLS systems. The known [23, 26, 27] two-parameter
formula for the LLS mean critical load (average failure strength), given by:

⟨σLLS
c (N)⟩= α

(ln
√

N)β
(3)

also holds for our LLS systems after each cycle (α and β are fitting parameters).
Moreover, this provides the appropriate formula for the mean strengthening ⟨ϕ⟩,
as shown by the solid line in the inset of Figure 1a. The size effect on the critical
load, characteristic of LLS systems, becomes more pronounced after the complete
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preloading-replacement procedure, as reflected in the shape of the ⟨ϕ⟩ curve. As the
system goes through subsequent cycles, the variability of critical loads also changes –
the standard deviation is noticeably greater for systems after complete cycling com-
pared to those with no cycling (see Fig. 1b). Effectively, the post-cycling distribution
reflects the distribution of the weakest strength thresholds across individual systems.
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Fig. 2. Mean strengthening of LLS (a) and GLS systems (b) as a function of ρ . Data points represent
simulation results, while solid lines show fits based on formula (4) for LLS and formula (5)

for GLS, with parameters obtained from data fitting

The effect of disorder on the strengthening of the system is graphically reported
in Figure 2. It is seen that ⟨ϕ⟩ is a decreasing function of ρ for both the GLS and LLS
rules. Thus, as the system disorder decreases, the strengthening ratio also decreases,
reaching a value of 1 in the case of a homogeneous system (a system without disor-
der). The dependence on system disorder is also evident in the size effect related to
the strengthening of LLS systems (see Fig. 2a). A pronounced size effect is observed
in the case of relatively high disorder (ρ = 2). However, as the parameter ρ increases,
the size effect gradually weakens, becoming almost negligible for relatively homoge-
neous (low-disorder) systems (ρ = 12). In contrast, in GLS systems, the size effect is
already weak at low values of ρ (present primarily due to statistical fluctuations) and
becomes virtually absent in the low-disorder regime. Therefore, for clarity, Figure 2b
shows data corresponding to a single system size, namely L = 500.

For both extreme load transfer rules, we propose formulas for the mean strength-
ening as a function of ρ , assuming a fixed system size. In the case of LLS systems,
a good approximation is provided by

⟨ϕLLS
N (ρ)⟩= a1 ·ρb1

(lnρ)c1
(4)
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whereas function suitable for the GLS systems can be expressed as

⟨ϕGLS
N (ρ)⟩= a2 +

b2

ρc2
(5)

where a1,b1,c1,a2,b2,c2 are fitting parameters.
The mean macroscopic strength of the GLS systems without preloading is known

from the literature [7, 26, 28-30]. The mean critical load, ⟨σGLS,pre
c (N)⟩, decreases

with increasing system size N, and in the thermodynamic limit it converges to a finite,
non-zero value – in contrast to the behavior observed in LLS systems. For uniformly
disordered systems, the asymptotic (macroscopic) strength is given by σ

GLS
c (∞) =

= 0.25. The mean critical load for finite systems can be approximated by the follow-
ing formula

⟨σGLS
c (N)⟩= 0.25

(
1+1.2656N−2/3

)
. (6)

Initially uniformly distributed GLS systems, transformed by the complete preload-
ing-replacement process, are described by the expression

⟨σGLS,post
c (N)⟩= 0.5

(
1+0.4385N−0.3565) , (7)

which gives σ
GLS,post
c (∞) = 0.5, and as a result, ϕ

GLS
N→∞ = 2. For finite-size systems,

we have obtained ⟨ϕGLS (N)⟩= 2
(
1+0.2196N−0.3043). Therefore, the strengthening

ratio for the GLS systems is greater than for the LLS systems (see inset in Fig. 1a).
The critical load for Weibull-distributed GLS systems tends to (ρe)−1/ρ as the

system size N goes to infinity. The approximating formula for finite-size systems is
as follows:

⟨σGLS
c (ρ,N)⟩= (ρe)−1/ρ

1+0.996N−2/3

(
e2/ρ

ρ

)1/3
 . (8)

We have found that, after the complete preloading-replacement process, the mean
critical load can be fitted by the following three-parameter expression:

⟨σGLS,post
c (ρ,N)⟩= (ρe)−1/ρ ·a3 ·

(
1+b3 ·N−c3

)
(9)

where a3,b3,c3 are parameters that depend on ρ . Based on the fitting results,
the parameters take value in the ranges b3 ∈ (0.106,0.433) and c3 ∈ (0.363,0.451).
The parameters b3 and c3 account for the finite-size correction, while the most sig-
nificant parameter in the formula (9) is a3, which controls the strengthening of the
system. Interestingly, we observe that ⟨ϕGLS

N (ρ)⟩ ⪆ a3 (ρ), becoming nearly equal
for larger system sizes. This observation supports the conjecture that the asymptotic
limit satisfies ϕ

GLS
N→∞(ρ) = a3 (ρ). The results of the fittings using Eqs. (8) and (9) are

illustrated in Figure 3, along with the inset showing the fitted values of the parameter
a3 as a function of ρ .
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Fig. 3. Mean critical load for GLS systems with initially Weibull-distributed pillar strengths (ρ = 2),
evaluated under two scenarios: (a) without the preloading-replacement process, and (b) after the

complete cycling process. The empirical data shown in the left panel are fitted using Eq. (8), while the
right panel data are approximated by Eq. (9). The inset displays the fitted values of the parameter a3

from Eq. (9) modeled by the function given in Eq. (5) with corresponding parameters

As previously noted, the strengthening ratio is higher in GLS systems compared
to their LLS counterparts. This applies to both cases studied: systems with initially
uniform strength distributions and those with initially Weibull-distributed thresholds
(see Fig. 2). This behavior is associated with another important measure of the sys-
tem’s overall robustness: the fraction d of failed elements that the system can tolerate
before a catastrophic avalanche leads to the collapse of the entire system. We assume
that each preloading cycle stops just before the onset of the catastrophic avalanche.
Consequently, dc(i) = Nc(i)/N represents the critical fraction of crushed elements
during the i-th preloading cycle (i = 1,2, . . . ,η), where Nc denotes the total number
of the failed pillars within this i-th cycle. It follows that Nc (η) = 0. Thus, after each
cycle, Nc pillars are replaced with new ones, and the resulting preloading-replace-
ment-transformed distribution of pillar strength thresholds increasingly deviates from
the initial one as the fraction of elements replaced during cycling increases.

Figure 4 shows the mean critical fraction, ⟨dc⟩, of failed elements during suc-
cessive steps of the cycling process. For both analyzed rules, the critical fraction is
a rapidly decreasing function of the cycle number. Thus, in terms of strengthening,
the initial steps of the preloading-replacement process are crucial, as they involve
the highest fraction of failed pillars, which are subsequently replaced with new ones.
We observe that ⟨dLLS

c ⟩ ≪ ⟨dGLS
c ⟩ (see inset in Fig. 4). The no-cycled LLS systems

can tolerate only a relatively small amount of damage, d, before the collapse of the
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system, compared to their GLS counterparts. Therefore, since the fraction of replaced
pillars is smaller in the case of the LLS scheme, the strengthening of LLS systems is
also less pronounced. However, when analyzing the effectiveness of the preloading-
-replacement process as the ratio between the achieved mean strengthening (which

can be regarded as the gain) and the mean total fraction, ⟨
η

∑
i=1

dc(i)⟩, of replaced pillars

during the entire cycling process (interpreted as the cost or price), the LLS scheme
proves to be more efficient (see Table 1). The LLS cycling enables the effective

removal of weak regions at relatively low cost (⟨ϕLLS⟩−1 > ⟨
η

∑
i=1

dLLS
c (i)⟩), whereas

in the GLS systems, the relation ⟨ϕGLS⟩ − 1 ≈ ⟨
η

∑
i=1

dGLS
c (i)⟩ holds. Especially, for

relatively low-disorder LLS systems, we observe ⟨ϕLLS⟩− 1 ≫ ⟨
η

∑
i=1

dLLS
c (i)⟩ – that

is, the achieved mean strengthening is around 3-4%, attained by replacing noticeably
less than 1% of N. Finally, it should be noted that some elements located at specific
nodes can be replaced multiple times during the cycling process.
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Fig. 4. Mean critical fraction of failed pillars, ⟨dc⟩, during the i-th preloading step as a function of
cycle number for (a) GLS systems and (b) LLS systems. The inset presents the relation

⟨dGLS
c ⟩/⟨dLLS

c ⟩ over the first five cycles. System size N = 500×500

In the final part of this section, we analyze the effect of interaction range by
applying the RV rule. Figure 5a shows the mean critical loads after a selected number
of preloading-replacement cycles, as well as after the complete cycling process. As γ

increases, the effective range of interactions decreases, shifting the system from long-
range interactions (γ = 0, where all elements are equidistant) to short-range interac-
tions that closely resemble those in the pure LLS scheme (γ = 10). However, in con-
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trast to the pre-cycling ⟨σRV,pre
c (ρ)⟩, the post-cycling function ⟨σRV,post

c (ρ)⟩ is non-
monotonic. Initially, as the system slightly departs from the pure GLS scheme, an
increase in the post-cycling mean critical load is observed up to γ ≈ 1.7. It is known
that the crossover from the mean-field limit to short-range interactions occurs near
γc = 2 [11]. Therefore, the post-cycling mean critical load is an increasing function
of γ through nearly the entire range of the mean-field regime and begins to decrease
just before the crossover to the regime of short-range interactions. By examining the
mean strengthening as a function of γ , this behavior is evident for all analyzed initial
system disorders (Fig. 5b). The strengthening is most pronounced for γ ∈ (1.4,1.7)
(approximately). Apparently, there seems to be a tendency for the maximum of the
strengthening to shift gently towards higher values with increasing system size and
towards lower values as the initial disorder decreases.

Table 1. Comparison of the mean total fraction of replaced pillars and the system strengthening
resulting from the complete cycling process in GLS and LLS systems. System size N = 500×500

Initial system disorder
GLS LLS

⟨
η

∑
i=1

dGLS
c (i)⟩ ⟨ϕGLS⟩ ⟨

η

∑
i=1

dLLS
c (i)⟩ ⟨ϕLLS⟩

uniform 1.0102 2.0092 0.3173 1.5647

ρ = 2 0.6555 1.6553 0.1497 1.2688

ρ = 3 0.3990 1.3989 0.0599 1.1419

ρ = 4 0.2860 1.2860 0.0300 1.0919

ρ = 5 0.2229 1.2228 0.0170 1.0668

ρ = 6 0.1825 1.1825 0.0104 1.0517

ρ = 7 0.1544 1.1544 0.0067 1.0421

ρ = 8 0.1338 1.1338 0.0045 1.0357

ρ = 9 0.1181 1.1181 0.0032 1.0310

ρ = 10 0.1057 1.1057 0.0023 1.0278

We noted earlier that for both the LLS and GLS rules, the initial cycles are crucial,
while later cycles are almost negligible – a pattern that also holds for γ ≈ 0 and
γ ≳ 3. This is not the case for γ around 1.7 (see Fig. 5a). However, the shape of
the curve ⟨σRV

c (ρ)⟩ after the initial two cycles closely resembles that of systems
without a preloading-replacement process. Yet after the third cycle, the shape of the
curve starts to deviate from that of ⟨σRV,pre

c (ρ)⟩. Compared to the pure GLS scheme
(γ ≈ 0) or long-range interactions, the effect of the later steps of the cycling process
decays more slowly around γ = 1.7. This is accompanied by a considerably greater
average number of cycles relative to the case of γ = 0 (see Fig. 6a). The fastest cycling
process is for the LLS-like systems. These LLS-like systems are also associated with
the greatest fraction of original pillars that remain intact after the complete cycling
process (see Fig. 6b). The mean fraction of remaining intact original elements is
highly negatively correlated with the obtained strengthening.
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Fig. 5. (a) Mean critical loads after the i-th cycle (see legend) as a function of the parameter γ .
Systems of size N = 100×100 with initially Weibull-distributed pillar strength thresholds (ρ = 2).
(b) Mean strengthening, ⟨ϕRVM⟩, as a function of the parameter γ . Systems of size N = 100×100
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Fig. 6. (a) Mean number of preloading-replacement cycles as a function of γ . (b) Mean fraction of
initial elements that survive the cycling process as a function of the parameter γ . Systems of size

N = 100×100

The reason why the mean strengthening at γ ≈ 1.7 is more efficient than in the
limiting case of γ = 0 can be explained as follows. As the parameter γ increases,
the effective range of interactions decreases – there is an interplay between global and
local load redistribution. At γ ≈ 1.7 the load transfer becomes sufficiently localized
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to effectively eliminate elements from the weakest regions during preloading, while
still maintaining the character of mean-field regime to prevent the early triggering
of a catastrophic avalanche. Thus, γ ≈ 1.7 provides an optimal level of an effective
range of interactions.

In the work [23], we simulated the critical loading of arrays under the RV rule,
previously subjected to subcritical preloading without the replacement of the failed
elements. The results of those simulations differ qualitatively from those produced
by the cyclic preloading-replacement procedure. Under the pure GLS scenario
(γ = 0), we observed virtually no effect of subcritical preloading on the critical
load. A strengthening effect became evident in the regime of short-range interac-
tions, increasing in magnitude as the effective interaction range decreased. However,
during the transition from a regime dominated by long-range interactions to one
dominated by short-range interactions, a weakening was observed, with a peak around
γ ∈ (1.7,2). In contrast, in this range of γ , the influence of cyclic preloading combined
with the replacement of failed elements is particularly noticeable, as it is accompa-
nied by a strengthening greater than in the GLS-like and LLS-like cases, with the
most pronounced strengthening occurring near γ = 1.7.

4. Conclusions

We have conducted computer simulations of critical loading in arrays of pillars,
which were previously subjected to cyclic subcritical preloading together with the
replacement of failed elements. As a result, the preloading-replacement-transformed
distributions of pillar strength thresholds deviate from those observed in the non-
preloaded systems, with particularly significant differences in relatively highly disor-
dered systems. The systems are effectively purged of their weakest elements.

The applied cycling stops after the cycle in which the number of replaced pillars is
zero. This ensures that the resulting systems display perfectly brittle behavior: catas-
trophic collapse occurs abruptly after the failure of a single element, and the systems
cannot tolerate any pre-critical damage. However, since the disorder in the strength
of the system’s elements plays a key role in the failure process, the post-cycling sys-
tems exhibit an increase in macroscopic strength compared to non-preloaded systems.
The scale of strengthening depends on the applied load transfer rule, the size of the
system, and the initial disorder of the system. The strengthening ratio is an increas-
ing function of the amount of disorder in the system. By analyzing two extreme load
transfer rules – namely, the GLS and LLS rules – we observed a stronger strengthen-
ing effect in the mean-field regime. Nevertheless, the strengthening process is more
efficient in the LLS case, as a noticeable increase in strength is achieved through
the insertion, during the cycling process, of a relatively small number of new pillars.

The rule that interpolates between the global load sharing and local load sharing
schemes is the range variable rule. By varying the value of γ between 0 and 10, one
can transition from pure GLS to LLS-like systems. Computer simulations revealed
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that, unlike in non-preloaded systems, the post-cycling mean critical load is not
a monotonically decreasing function of γ . Instead, throughout most of the mean-
field regime, it increases, with the strengthening effect being most pronounced for
γ ∈ (1.4,1.7). Beyond this range, both the post-cycling mean critical load and the
mean strengthening begin to decrease.
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