
Journal of Applied Mathematics and Computational Mechanics 2025, 24(1), 56-68 

www.amcm.pcz.pl p-ISSN 2299-9965 
 DOI: 10.17512/jamcm.2025.1.05 e-ISSN 2353-0588 

DERIVING ANALYTICAL SOLUTIONS FOR THE FRACTIONAL 

BURGERS-HUXLEY (FBH) EQUATION: THE ROLE OF  

THE TANH-COTH METHOD 

Ali Satty, Abaker A. Hassaballa, Mohyaldein Salih, Mnahil Bashier, Elzain A.E. Gumma 

Department of Mathematics, College of Science, Northern Border University, Arar, Saud Arabia 

alisatty1981@gmail.com, abakerh@gmail.com, mohyyassin@gmail.com  

munahilbashier@yahoo.com, elzain.elzain@gmail.com 

 

Received: 20 September 2024; Accepted: 26 February 2025 

Abstract. This paper focuses on the nonlinear Fractional Burgers-Huxley (FBH) equation  

in space-time, using the conformable fractional derivative (CFD) method. The paper aims to 

investigate the application of the Tanh-Coth method in order to find exact solutions to the 

FBH equation. Various exact analytical solutions for the FBH equation are obtained. Graph-

ical representations are included to show the physical properties of the obtained solutions. 

The results reveal that the Tanh-Coth method is effective and dependable for finding exact 

solutions to the nonlinear FBH equation. 
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1. Introduction  

Nonlinear partial differential equations (NPDEs) are fundamental in characteriz-

ing complex systems across different scientific areas. NDPEs are essential for illus-

trating the intricacies of nonlinear phenomena, such as wave propagation and pattern 

formation, areas where linear models cannot be characterized. Acquiring exact ana-

lytical solutions for NDPEs is crucial for gaining a deeper insight into the complex 

behaviors provided in various disciplines like fluid dynamics [1], plasma physics [2], 

and biological systems [3]. Recently, studies have developed several advanced  

numerical methods for solving NDPEs, providing robust tools to estimate solutions 

when analytical approaches are inadequate [4-6]. Approaches like the Tanh-Coth 

method, Adomian decomposition method, variational iteration method, and Bernoulli 

sub-equation function have demonstrated great potential to solve NDPEs with  

impressive accuracy and efficiency [7-10]. By improving the ability to address intricate 
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nonlinear problems, these approaches also extend the range of applications in today’s 

scientific research [7, 11]. 

As given in [12], the general form of the Burgers-Huxley equation (BHE) can be 

mathematically shown as follows: 

 �� − ��� + ���� − ��(	 − �
)(�
 − 1) = 0. (1) 

In this equation, �(�, �) represents a function dependent on both the spatial variable (�) 

and the temporal variable (�), with 	, �, � and � being constants. When � = 1 and � = 0, equation (1) reduces to the Huxley equation, which elucidates the dynamics of 

wall motion in liquid crystals and the propagation of nerve impulses in neural fibers: �� − ��� − ��(	 − �)(� − 1) = 0. Similarly, when � = 1 and � = 0, equation (1) 

simplifies to the Burgers' equation, which models the far field of wave propagation 

in nonlinear dissipative systems: �� − ��� + ���� = 0. For � = 1 and � ≠ 0, � ≠ 0, 

equation (1) transforms into the BHE: �� − ��� + ���� − ��(	 − �)(� − 1) = 0. 
When � = −1, � = 1 and � = 1, equation (1) transforms into a BHE as described  

in [13]: 

 �� − ��� − ��� − �(	 − �)(� − 1) = 0. (2) 

The Fractional BHE (FBHE) in space-time is mathematically presented as: 

 ���� − ����u − � ���� − �(	 − �)(� − 1) = 0. (3) 

This equation integrates the Burgers’ and Huxley equations with fractional calcu- 

lus, enabling the modeling of complex systems and effectively capturing phenomena 

such as anomalous diffusion, memory effects, and non-local correlations. The equa-

tion is employed in various applications like material science, biology and fluid  

dynamics for modeling viscoelastic materials, studying anomalous diffusion and 

characterizing nonlinear wave propagation and turbulence, respectively. Within  

the use of fractional derivatives, the equation effectively captures systems character-

ized by memory and nonlocal interactions, enhancing the accuracy of modeling com-

plicated real-world phenomena. This study demonstrates exact wave solutions of this 

equation by employing the conformable fractional derivative (CFD) [14]. CFD,  

an advanced tool in fractional calculus, gives a more intuitive and physically mean-

ingful interpretation, allowing for the modeling of systems that exhibit memory  

effects and non-local interactions, where changes are influenced by the current  

state and the history of the system. CFD retains essential properties such as linearity, 

the product rule, and the chain rule, showing a versatile framework for capturing 

complex, real-world phenomena. By applying these properties, this study illustrates 

CFD’s effectiveness in solving the FBHE in space-time, therapy enhancing the fields 

of fractional calculus, and nonlinear dynamics. In equation (3), the CFD denotes time � and space � as ��� and ��� respectively. Higher-order derivatives are defined as ����� = ���(����) for second-order. In terms of independent variables, the CFD  

is defined by an order α (0 <  � ≤  1) and can be mathematically expressed as: 



58 A. Satty, A.A. Hassaballa, M. Salih, M. Bashier, E.A.E. Gumma 

���(�) = ���
→! "#$%
$&'()*"($)+
 ∀� > 0, � ∈ (0,1/. 
�(�)(0) = ���$→!0�(�)(�). 

When � equals 1 in the previous equations, the non-integer differential changes 

to the commonly known integer differential. Further explanations of CFD can be 

found in [14]. Taking advantage of CFD properties, this study employs the Tanh- 

-Coth method [15] to acquire exact wave solutions for equation (3). This method is 

used in this study due to its efficiency in addressing nonlinear differential equations, 

providing advantages such as creating various solution forms and ease of implemen-

tation. The method is also effective for NLPDEs with particular structural properties, 

particularly those transformable into hyperbolic functions. Yet, it falters with equa-

tions that have chaotic, irregular, or complex boundary conditions and lack sym-

metry or integrability. This study extends the emphasis on the focus on fractional 

dimensions, with respect to the FBHE, as demonstrated by references [16-19].  

In contrast to prior studies (see [20-25]) that have extensively employed the Tanh-

-Coth method to various NPDEs, this study uniquely focuses on its application,  

a context in which this method has yet to be explored. The originality of this study 

arises from applying the Tanh-Coth method specifically for the FBHE, particularly 

filling a gap in its application to this equation. The main objective is to apply the 

Tanh-Coth method to derive exact solutions for the FBHE for various fractional  

order conditions. The motivation of this study comes from the need to create efficient 

and reliable methods for solving NPDEs, indispensable for modeling real-world  

phenomena with nonlinear characteristics. A range of exact analytical solutions for 

the FBHE has been acquired. Visual depictions are presented to elucidate the physi-

cal properties of the acquired solutions, illustrating the influence of fractional order. 

This paper is structured as follows: Section 1 gives the introduction of the study, 

Section 2 presents the steps of employing the Tanh-Coth method, Section 3 provides 

the application of the Tanh-Coth method, Section 4 outlines the physical properties 

and graphs of FBHE solutions, and Section 5 summarizes the results. 

2. Steps of employing the Tanh-Coth method 

As stated in [26], this Tanh-Coth method posits that traveling wave solutions  

can be visualized through the tanh function, involving the following key steps: 

Step 1: Consider the following NDPE 

 1(�, ����, ����, �����, ���(����), �����, . . . ) = 0, (4) 

where �(�, �) is a function that depends on �) and �. 

Step 2: To derive solutions for equation (4), the traveling wave transformation is 

utilized. By setting �(�, �) = �(�) with � = (�� − 2��)/�, this transformation  

converts equation (4) into ordinary differential equation (ODE) 
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 4(�, �5, �55, u555, … ) = 0, (5) 

where the prime symbol (') represents differentiation with respect to �. 

Step 3: Introduce a new independent variable 

 7 = �89ℎ(;<), (6) 

where ; is wave number, which leads to the following transformations of the  

derivative 

 

==> = ;(1 − 7?) ==@ ,
=A=>A = −2;?(1 − 7?) ==@ + ;?(1 − 7?)? =ACD ,

=E=>E = −2;F(1 − 7?)(37? − 1) ==@ − 6;F(1 − 7?)? =A=@A + ;F(1 − 7?)F =E=@E .⋮
 (7) 

Other derivatives can be derived in a similar manner. 

Step 4: Propose an expansion for �(�, �) as follows 

 �(�, �) = J(7) = ∑ LM7M +NMO! ∑ L*M7*M,NMOP  (8) 

where � is typically a positive integer. To ascertain the value of �, the highest order 

linear terms in equation (5) are typically balanced with the highest order nonlinear 

terms. 

Step 5: Once � is determined, we substitute equation (8) into (5). This substitution 

transforms the ODE into an equation expressed in powers of 7. We then gather all 

coefficients of the powers of 7 in the resulting equation, ensuring that these coeffi-

cients must vanish. This process yields a system of algebraic equations involving  

the parameters LM(Q = 0, ±1, ±2, … , �), ; and 2. By solving for these parameters 

and employing equation (8), we can derive an analytic solution �(�, �) for the  

FBH equation. 

3. Utilization of the Tanh-Coth method 

The Tanh-Coth method is utilized to derive wave solutions for equation (3).  

Now, consider the traveling wave transformation as follows: 

 �(�, �) = �(<), < = P� (�� − 2��). (9) 

Substituting Eq. (9) into Eq. (3) transforms Eq. (3) into an ODE, 

 2 �5 + ��5 + �55 + �(	 − �)(� − 1) = 0. (10) 
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By setting the nonlinear term �F equal to the highest order derivative (�55), we  

determine that � = 1. As a result, 

 �(<) = L*PX*P + L! + LP7. (11) 

Replacing Eq. (11) in Eq. (10), we get 

 

T(L*PX*P + L! + LPX)5 + (L*PX*P + L! + LPX)(L*PX*P + L! + LPX)5+(L*PX*P + L! + LPX)55 + (L*PX*P + L! + LPX)× #	 − (L*PX*P + L! + LPX))#(L*PX*P + L! + LPX) − 1) = 0.  (12) 

By substituting equation (12) back into equation (10) and systematically organ-

izing all terms according to their respective powers of 7, we derive a set of algebraic 

equations by setting each term’s coefficient to zero in equation (10). These resulting 

algebraic equations are subsequently solved using Maple’s computational tools to 

produce the following solution sets. 

Case 1: Upon investigation, in case of L*P = 0, we get 

 L! =  P? ,  LP =  P? , ; = P? , 2 = 	 − 1. (13) 

 L! =  P? ,  LP = − P? , ; = − P? , 2 = 	 − 1. (14) 

 L! =  P? 	,  LP =  P? 	, ; = P? 	, 2 = 1 − 	. (15) 

 L! =  P? 	,  LP =  − P? 	, ; = − P? 	, 2 = 1 − 	. (16) 

 L! =  P? 	 + P? ,  LP =  − P? 	 + P? , ; = − P? 	 + P? , 2 = −(1 + 	). (17) 

 L! =  P? 	 + P? ,  LP =  P? 	 − P? , ; = P? 	 − P? , 2 = −(1 + 	). (18) 

 L! =  P? ,  LP =  P? , ; = − PV , 2 = P? − 2	. (19) 

 L! =  P? ,  LP =  − P? , ; = PV , 2 = P? − 2	. (20) 

 L! =  P? 	,  LP =  P? 	, ; = − PV 	, 2 = P? 	 − 2. (21) 

 L! =  P? 	,  LP =  − P? 	, ; = PV 	, 2 = P? 	 − 2. (22) 

 L! =  P? 	 + P? ,  LP = − P? 	 + P? , ; = PV 	 − PV , 2 = P? 	 + P?. (23) 

 L! =  P? 	 + P? ,  LP =  P? 	 − P? , ; = − PV 	 + PV , 2 = P? 	 + P?. (24) 
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Case 2: Upon investigation, in case of LP = 0, we have 

 L! =  P? ,  L*P = − P? , ; = PV , 2 = P? − 2	. (25) 

 L! =  P? ,  L*P =  P? , ; = P? , 2 = 	 − 1. (26) 

 L! =  P? 	,  L*P = − P? 	, ; = PV 	, 2 = P? 	 − 2. (27) 

 L! =  P? 	,  L*P =  P? 	, ; = P? 	, 2 = 1 − 	. (28) 

 L! =  P? ,  L*P =  P? , ; = − PV , 2 = P? − 2	. (29) 

 L! =  P? ,  L*P = − P? , ; = − P? , 2 = 	 − 1. (30) 

 L! =  P? 	,  L*P =  P? 	, ; = − PV 	, 2 = P? 	 − 2. (31) 

 L! =  P? 	,  L*P = − P? 	, ; = − P? 	, 2 = 1 − 	. (32) 

 L! =  P? 	 + P? ,  L*P = P? 	 − P? , ; = − PV 	 + PV , 2 = P? 	 + P?. (33) 

 L! =  P? 	 + P? ,  L*P = − P? 	 + P? , ; = − P? 	 + P? , 2 = −(	 + 1). (34) 

 L! =  P? 	 + P? ,  L*P = − P? 	 + P? , ; = PV 	 − PV , 2 = P? 	 + P?. (35) 

 L! =  P? 	 + P? ,  L*P = P? 	 − P? , ; = P? 	 − P? , 2 = −(	 + 1). (36) 

Case 3: In case where LP ≠ 0 and L*P ≠ 0, it is observed that 

 L! =  P? ,   LP = − PV , L*P =  − PV , ; = PW , 2 = P? − 2	. (37) 

 L! =  P? ,   LP = PV , L*P =  PV , ; = − PW , 2 = P? − 2	. (38) 

 L! =  P? ,   LP = PV , L*P =  PV , ; = PV , 2 = 	 − 1. (39) 

 L! =  P? ,   LP = − PV , L*P = − PV , ; = − PV , 2 = 	 − 1. (40) 

 L! =  P? 	,   LP = − PV 	, L*P =  − PV 	, ; = PW 	, 2 = P? 	 − 2. (41) 

 L! =  P? 	,   LP = PV 	, L*P =  PV 	, ; = − PW 	, 2 = P? 	 − 2. (42) 
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 L! =  P? 	,   LP = PV 	, L*P =  PV 	, ; = PV 	, 2 = 1 − 	. (43) 

 L! =  P? 	,   LP = − PV 	, L*P =  − PV 	, ; = − PV 	, 2 = 1 − 	. (44) 

 L! =  P? 	 + P? ,  LP = PV 	 − PV ,  L*P = PV 	 − PV , ; = − PW 	 + PW , 2 = P? 	 + P?. (45) 

 L! =  P? 	 + P? ,  LP = − PV 	 + PV ,  L*P = − PV 	 + PV , ; = PW 	 − PW , 2 = P? 	 + P?. (46) 

 L! =  P? 	 + P? , L = − PV 	 + PV ,  L*P = − PV 	 + PV , ; = − PV 	 + PV , 2 = −(	 + 1). (47) 

 L! =  P? 	 + P? , L = PV 	 − PV ,  L*P = PV 	 − PV , ; = PV 	 − PV , 2 = −(	 + 1). (48) 

Equations (13) through (24) provide sets of soliton solutions. Such solutions are 

given by: 

 �P(�, �) = P? X1 +  tanh ] P?� (�� + (	 − 1)��)^_. (49) 

 �?(�, �) = P? 	 X1 +  tanh ]?̀� (�� + (1 − 	)��)^_. (50) 

 �F(�, �) = P? X(	 + 1) + (	 − 1) tanh ] P?� (	 − 1)(�� − (1 + 	)��)^_. (51) 

 �V(�, �) = P? X1 −  tanh ]V̀� a�� + (P? − 2	)��b^_. (52) 

 �c(�, �) = P? 	 X1 −  tanh ]V̀� a�� + (P? 	 − 2)��b^_. (53) 

 �d(�, �) = P? X(	 + 1) − (	 − 1) tanh ] PV� (	 − 1) a�� + P? (	 + 1)��b^_. (54) 

Also, equations (25) through (36) yield sets of traveling wave solutions: 

 �e(�, �) =  P? X1 − coth ] PV� a�� + aP? − 2	b ��b^_. (55) 

 �W(�, �) =  P? X1 + coth ] P?� (�� + (	 − 1)��)^_. (56) 

 �h(�, �) = P? 	 X1 − coth ] PV� 	 a�� + aP? 	 − 2b ��b^_. (57) 

 �P!(�, �) = P? 	 X1 + coth ] P?� 	(�� + (1 − 	)��)^_. (58) 
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 �PP(�, �) = P? X(	 + 1) + (	 − 1) coth ]− PV� (	 − 1) a�� + P? (	 + 1)��b^_. (59) 

 �P?(�, �) = P? X(	 + 1) − (	 + 1) coth ]− P?� (	 − 1)(�� − (	 + 1)��)^_. (60) 

Furthermore, equations (37) through (48) provide sets of traveling wave solutions: 

 �PF(�, �) = iP? X1 −  P? �89ℎ ] PW� a�� + aP? − 2	b ��b^− P?  Tj�ℎ PW� a�� + aP? − 2	b ��b_ . (61) 

 �PV(�, �) = kP? X1 + P? �89ℎ ] PV� (�� + (	 − 1 )��)^
+ P?  Tj�ℎ ] PV� (�� + (	 − 1)��)^_ . (62) 

 �Pc(�, �) = kP? 	 X1 −  P? �89ℎ ] PW� 	 a�� + aP? 	 − 2b ��b^
− P?  Tj�ℎ ] PW� 	 a�� + P? 	 − 2b^_ . (63) 

 �Pd(�, �) = kP? 	 X1 +  P? �89ℎ ] PV� 	(�� + (1 − 	 )��)^
+ P?  Tj�ℎ ] PV� 	(�� + (1 − 	)��)^_  (64) 

 �Pe(�, �) = kP? X(	 + 1) −  P? (	 − 1)�89ℎ ] PW� (	 − 1) a�� + P? (	 + 1)��b^
− P?  (	 − 1)Tj�ℎ ] PW� (	 − 1) a�� + P? (	 + 1)��b^ .  (65) 

 �PW(�, �) = kP? X(	 + 1) +  P? (	 − 1)�89ℎ ] PV� (	 − 1)(�� − (	 + 1)��)^
+ P?  (	 − 1)Tj�ℎ ] PV� (	 − 1)(�� − (	 + 1)��)^ .  (66) 

4. Graphical depiction of the obtained solutions 

Both 3D and 2D graphical visualizations are presented to illustrate the obtained 

solutions under various spatial (�) and temporal intervals (�), incorporating different 

values of the fractional order parameter, �. 

Figure 1 depicts 3D graphs that demonstrate the soliton solutions of �P(�, �),  

defined by a parameter within the interval [0, 2], as shown in equation (49). The 3D 

graphs showcase exact solutions for � = 1, 0.90, 0.80, and 0.70, with the soliton  

solutions given in Figures (a-d), respectively. A 2D graph complements these visuals, 
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illustrating that an increase in α results in a decrease in the magnitude of the soliton 

wave. Physically, this reflects the damping effect induced by higher fractional orders, 

where energy dissipates more effectively, leading to less pronounced wave ampli-

tudes. The fractional order (α) significantly impacts wave behavior by governing  

the medium’s dispersive and dissipative properties. Higher � values lead to reduced 

energy localization and broader energy dispersion, resulting in diminished wave  

amplitudes. Unlikely, lower � values enhance energy localization, creating sharper 

and more pronounced waveforms. This balance between energy conservation, dissi-

pation, and dispersion highlights the critical role of fractional orders in shaping  

soliton dynamics, as evidenced by similar trends in nonlinear wave solutions across 

various parameter intervals. 

 

 
Fig. 1. 3D graphs of solutions �P(�, �) for 	 = 2, with 0  �, �  4, and � = 1, � = 0.90, � = 0.80, � = 0.70 in Figures (a), (b), (c), and (d), respectively. Figure (f)  

denotes the 2D plot with � = 2 

Figure 2 displays a detailed 3D depiction of the traveling wave solutions for �e(�, �), as presented in equation (55), to examine the dynamic behavior of nonlinear 

wave propagation. These solutions are acquired for a specific set of parameters over 

the interval [0, 2], with � = 1, 0.90, 0.80, and 0.70 corresponding to Figures (a-d), 

respectively. The graphs clearly illustrate that as � decreases, the wavelength of  

 = 0.7 

 = 1 
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the traveling waves shortens, showing an inverse relationship between � and the 

wavelength. This behavior reflects the increasing dispersion effects associated with 

lower fractional orders, where wave energy is more widely distributed, leading to 

reduced coherence and compactness in wave propagation. Additionally, the 2D graph 

(Figure f) reveals a reduction in wave magnitude as α decreases from 1 to 0.70,  

signifying a damping effect. The fractional order affects both the spatial structure 

and energy concentration of waves, with lower � values causing broader energy  

dispersion and damping. This has important applications in controlling wave propa-

gation and minimizing energy concentration, as seen in material science and signal 

processing. Similar trends in other nonlinear systems highlight the significant role  

of fractional orders in wave dynamics. 

 

 
Fig. 2. 3D graph of solutions �e(�, �) for 	 = 2 with 0  �, �  4, and � = 1, � = 0.90, � = 0.80, � = 0.70 in Figures (a), (b), (c), (d)  

respectively. Figure (f) denotes the 2D plot with � = 2 

Figure 3 displays 3D graphical renderings of the solution �PF(�, �) under specific 

conditions, with both spatial and temporal variables ranging from 0 to 4. Figures (a-d) 

illustrate the behavior of �PF(�, �) for α = 1, 0.90, 0.80 and 0.70, respectively.  

These depictions reveal the dynamic nature of traveling wave solutions arising from 

the nonlinear wave behavior given in equation (61). The 2D graph provides additional 

 = 1 

 = 0.7 
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insights, displaying that as α increases from 0.70 to 1, the magnitude of �PF(�, �) 

becomes significantly larger. Higher fractional orders (�) enhance wave amplitude, 

reducing dissipation and increasing wave coherence, enabling stronger energy prop-

agation over time and space. In contrast, lower fractional orders (� close to 0.70) 

result in damped waves with reduced amplitude, reflecting greater dispersive and 

dissipative effects. These patterns highlight the crucial role of fractional order in 

shaping energy concentration and stability in traveling wave solutions, consistent 

across similar nonlinear wave systems. 

 

 
Fig. 3. 3D graph of solutions �PF(�, �) for 	 = 2 with 0  �, �  4 and � = 1, � = 0.90, � = 0.80, � = 0.70 in Figures (a), (b), (c), (d)  

respectively. Figure (f) denotes the 2D plot with � = 2 

5. Conclusion 

This study applied the Tanh-Coth method to derive exact analytical solutions for 

the FBH equation using the CFD technique. A range of exact analytical solutions 

was obtained, emphasizing the influence of the fractional order on the outcomes. 

Solutions for various fractional orders were visually compared with the exact solu-

tions in the classical scenario � = 1 illustrating the potential effect of different � 

values on the solution characteristics. The physical attributes of the solutions were 

depicted using graphical representations. Compared to prior studies, the soliton  

solutions derived in this study are comparable to those provided by Wazwaz [13] 

 = 1 

 = 0.7 
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when � equals 1. The results reveal that the Tanh-Coth method is efficient, simple, 

and reliable. The findings of this study serve as a valuable resource for future re-

search in the context of wave phenomena. All calculations in this study were carried 

out using MAPLE. Future research could investigate the application of other analyt-

ical methods like the Homotopy Analysis Method (HAM) or Adomian Decomposi-

tion Method (ADM), to further expand the understanding and solution space of  

the FBH equation. In addition, exploring the influence of fractional parameters on  

further complex physical models or coupling the Tanh-Coth method with numerical 

simulations could give deeper insights. Finally, experimental validation of the  

acquired solutions and their application in real-world wave phenomena remain 

promising directions for prospective work. 
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