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Abstract. In this paper, we develop a new numerical method called Khalouta residual
power series method (KHRPSM) by mixing the Khalouta transform method and the residual
power series method for solving nonlinear fractional hyperbolic-like equations with variable
coefficients. The KHRPSM resolves nonlinear fractional problems without resorting to
He’s polynomials and Adomian polynomials. Therefore, the small computational size of
this method is the strength of the scheme, which is an advantage compared with various
series solution methods. The approximate and exact solutions of a numerical example of
the proposed problem are demonstrated by the presented method. The numerical and exact
solutions are compared with each other. The obtained results show that KHRPSM is easy to
implement and highly effective in constructing approximate analytical solutions to nonlinear
fractional problems arising in related fields of science and technology.

MSC 2010: 34A08, 26A33, 34K28, 35C10
Keywords: hyperbolic-like equations, Caputo fractional derivative, Khalouta transform
method, residual power series method, truncated series solutions

1. Introduction

In recent years, nonlinear fractional partial differential equations (NFPDEs) have
been tackled by many researchers because they play an important role in describ-
ing many phenomena arising in physics [1], fluid mechanics [2], viscoelasticity [3],
chemistry [4], wave propagation [5], biology [6], medicine [7], aerodynamic [8], con-
trol theory [9], finance [10], dynamical systems [11], and engineering sciences [12].
The exact solutions of the NFPDEs can help us get familiar with the described pro-
cess. So, in the past decades, mathematicians have made many efforts in the study of
exact solutions of NFPDEs. But for most these equations, no exact solution is known,
and in some cases, it is not even clear whether a unique solution exists. Therefore,
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approximation methods, such as numerical and analytical methods, have been devel-
oped. Recently, several numerical and analytical methods have been proposed for
the solutions of NFPDEs such as the Adomian decomposition method (ADM) [13],
homotopy analysis method (HAM) [14], homotopy perturbation method (HPM) [15],
differential transform method (DTM) [16], and the fractional variational iteration
method (FVIM) [17].

The novelty of this work lies in the construction of the Khalouta residual power se-
ries method which involves the integration of two powerful techniques: the Khalouta
transform (KHT), which was first introduced by Ali Khalouta [18], and the residual
power series method (RPSM) [19] which is a well-known mathematical technique
for solving nonlinear partial differential equations.

KHRPSM provides a simple and fast way to find the coefficients of the recom-
mended series as a solution to the problem. Unlike traditional RPSM, which requires
calculating the fractional derivative each time to determine the coefficients for a se-
ries, KHRPSM only relies on the concept of the limit at infinity to determine the
coefficients.

In this paper we present approximate analytical solutions for a nonlinear fractional
hyperbolic-like equation with variable coefficients using KHRPSM.

The hyperbolic-like equation with fractional derivatives is written in operator
form as

D2α
θ W (V ,θ) =

N

∑
i, j=1

F1i j(V ,θ ,W )
∂ k+m

∂xk
i ∂xm

j
F2i j(Wxi ,Wx j) (1)

+
N

∑
i=1

G1i(V ,θ ,W )
∂ p

∂xp
i
G2i(Wvi)+H (V ,θ ,W )+S (V ,θ),

under the initial conditions

W (V ,0) = W0(V ),Dα
θ W (V ,0) = W1(V ), (2)

where D2α
θ is the Caputo fractional derivative operator of order 2α with 1/2 <

α ≤ 1, W =
{
W (V ,θ),V = (x1,x2, ...,xN) ∈ RN ,θ ≥ 0,N ∈ N∗} , F1i j,G1i i, j ∈

{1,2, ...,N} are nonlinear functions of V ,θ and W , F2i j,G2i i, j ∈ {1,2, ...,N} are
nonlinear functions of derivatives of W with respect to xi and x j i, j ∈ {1,2, ...,N},
respectively. Also H ,S are nonlinear functions and k,m, p are integers.

These types of equations are of considerable significance in various fields of ap-
plied sciences, mathematical physics, nonlinear hydrodynamics, engineering physics,
biophysics, human movement sciences, astrophysics and plasma physics. These equa-
tions describe the evolution of erratic motions of small particles that are immersed
in fluids, fluctuations of the intensity of laser light, and velocity distributions of fluid
particles in turbulent flows.

The remaining paper is organized in the following manner: The section ”Basic
definitions and results” gives detailed concepts related to fractional calculus and
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Khalouta transform. The section ”New formula of multiple fractional Taylor’s
series” presents a new formula, which will be useful for the KHRPSM. The section
”Khalouta residual power series method (KHRPSM)” acquaints the reader with the
mathematical formulation of KHRPSM using KHT and RPSM to solve the proposed
equations. The section ”Numerical experiment” provides a numerical example of the
application of the method. Finally, the conclusion of this work is presented in the
section entitled ”Conclusion”.

2. Basic definitions and results

Definition 1 [20] The Caputo fractional derivative of the function W (V ,θ) of order
α > 0 is defined by

Dα
θ W (V ,θ) = In−α

θ
W (n)(V ,θ),

where n− 1 < α ≤ n,n ∈ N, V ∈ Rn,θ ∈ R+ and Iα
θ is the fractional Riemann-

-Liouville integral operator defined as

Iα
θ W (V ,θ) =


1

Γ(α)

∫
ε

0
(θ − ε)α−1W (V ,ε)dε, if α > 0,

W (V ,θ), if α = 0.

Definition 2 [18] The Khalouta transform of a function W (V ,θ) can be described
as

KH [W (V ,θ)] = K (V ,s,γ,η) =
s

γη

∫
∞

0
exp
(
− sθ

γη

)
W (V ,θ)dθ ,

where s,γ,η > 0 are the parameters of the Khalouta transform. 2

Theorem 1 [21] Let K1(V ,s,γ,η) and K2(V ,s,γ,η) are the Khalouta transfoms
of W1(V ,θ) and W2,(V ,θ) respectively. Then we have

(1)

KH [aW1(V ,θ)+bW2(V ,θ)] = aK1(V ,s,γ,η)+bK2(V ,s,γ,η),

where a, b are real numbers.
(2)

KH [Iα
θ W (V ,θ)] =

(
γη

s

)α

K (V ,s,γ,η).

(3)

KH [Dα
θ W (V ,θ)] =

(
s

γη

)α

K (V ,s,γ,η)−
n−1

∑
i=0

(
s

γη

)α−i

W (i)(V ,0).
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(4)

KH
[

θ α

Γ(α +1)

]
=
(

γη

s

)α

,α >−1.

(5)

KH [Dmα
θ W (V ,θ)] =

(
s

γη

)mα

K (V ,s,γ,η)−
m−1

∑
i=0

(
s

γη

)(m−i)α

Diα
θ W (V ,0),

where Dmα
θ =Dα

θ D
α
θ ...D

α
θ (m−times). 2

3. New formula of multiple fractional Taylor’s series

Suppose that the multiple fractional power series representation of the function
W (V ,θ) at θ = 0 has the form [19]

W (V ,θ) =
∞

∑
m=0

Cm(V )θ mα ,n−1 < α ≤ n,V ∈ Rn,0 ≤ θ ≤ R,

and R is the radius of convergence of the multiple fractional power series.

Theorem 2 If W ∈ C (R× [0,R)) and Dmα
θ W ∈ C (R×(0,R)) for m = 0,1,2, ...,

then the coefficients Cm(V ) will take the form of

Cm(V ) =
Dmα

θ
W (V ,0)

Γ(mα +1)
,

where Dmα
θ =Dα

θ D
α
θ ...D

α
θ (m−times). 2

Lemma 1 The Khalouta transform of W (V ,θ) given by K (V ,s,γ,η), has multiple
fractional Taylor’s series representation as

K (V ,s,γ,η) =
∞

∑
m=0

(
γη

s

)mα

ϒm(V ), (3)

where ϒm(V ) represents mth coefficient of the new formula of multiple fractional
Taylor’s series in Khalouta transform. 2

PROOF Consider the following fractional Taylor series

W (V ,θ) = ϒ0(V )+ϒ1(V )
θ α

Γ(α +1)
+ϒ2(V )

θ 2α

Γ(2α +1)
+ϒ3(V )

θ 3α

Γ(3α +1)
+ ...

(4)
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Applying the Khalouta transform to both sides of equation (4) and using its
linearity property, we get

KH [W (V ,θ)] = ϒ0(V )+ϒ1(V )KH
[

θ α

Γ(α +1)

]
+ϒ2(V )KH

[
θ 2α

Γ(2α +1)

]
+ϒ3(V )KH

[
θ 3α

Γ(3α +1)

]
+ ...

Using point (4) of Theorem 1, we get

K (V ,s,γ,η) = ϒ0(V )+ϒ1(V )
(

γη

s

)α

+ϒ2(V )
(

γη

s

)2α

+ϒ3(V )
(

γη

s

)3α

+ ...

=
∞

∑
m=0

(
γη

s

)mα

ϒm(V ),

which is a new form of fractional Taylor’s series in Khalouta transform form.
Thus, the proof is completed. ■

Lemma 2 Suppose the function KH [W (V ,θ)] = K (V ,s,γ,η) has a multiple
fractional power series representation in the new form of the Taylor’s series (3).
Then we have

lim
s→∞

K (V ,s,γ,η) = ϒ0(V ) = W (V ,0).

PROOF Taking lim
s→∞

of equation (5) and performing a simple calculation, we get

lim
s→∞

K (V ,s,γ,η) = ϒ0(V ) = W (V ,0).

Theorem 3 Suppose that the function KH [W (V ,θ)] = K (V ,s,γ,η) has the
following multiple fractional power series representation

K (V ,s,γ,η) =
∞

∑
m=0

(
γη

s

)mα

ϒm(V ), (5)

then we have

ϒm(V ) =Dmα
θ W (V ,0),

where Dmα
θ =Dα

θ D
α
θ ...D

α
θ (m−times). 2

PROOF Consider that K (V ,s,γ,η) has multiple fractional power series representa-
tion as in equation (5). Then equation (5) becomes

K (V ,s,γ,η) = ϒ0(V )+
(

γη

s

)α

ϒ1(V )+
(

γη

s

)2α

ϒ2(V )

+
(

γη

s

)3α

ϒ3(V )+ ... (6)
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Multiplying equation (6) by
(

s
γη

)α

, we get

ϒ1(V ) =

(
s

γη

)α

K (V ,s,γ,η)−
(

s
γη

)α

ϒ0(V )−
(

γη

s

)α

ϒ2(V )

−
(

γη

s

)2α

ϒ3(V )− ... (7)

Taking lim
s→∞

on equation (7) and using point (5) of Theorem 1, we get

ϒ1(V ) = lim
s→∞

((
s

γη

)α

K (V ,s,γ,η)−
(

s
γη

)α

ϒ0(V )

)
= lim

s→∞
(KH [Dα

t W (V ,θ)] (s,γ,η)) . (8)

By Lemma 2, equation (8) becomes

ϒ1(V ) =Dα
θ W (V ,0).

Similarly, we multiply equation (6) by
(

s
γη

)2α

and we get

ϒ2(V ) =

(
s

γη

)2α

K (V ,s,γ,η)−
(

s
γη

)2α

ϒ0(V )−
(

s
γη

)α

ϒ1(V )

−
(

γη

s

)α

ϒ3(V )+ ... (9)

Taking lim
s→∞

on equation (9) and using point (5) of Theorem 1, we get

ϒ2(V ) = lim
s→∞


(

s
γη

)2α

K (V ,s,γ,η)−
(

s
γη

)2α

ϒ0(V )

−
(

s
γη

)α

ϒ1(V )


= lim

s→∞

(
KH

[
D2α

θ W (V ,θ)
]
(s,γ,η)

)
. (10)

By Lemma 2, equation (10) becomes

ϒ2(V ) =D2α
θ W (V ,0).

To complete the proof, we use the principle of mathematical induction method.

Suppose ϒm−1(V ) = D
(m−1)α
θ

W (V ,0). Multiplying equation (6) by
(

s
γη

)mα
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and using point (5) of Theorem 1 and Lemma 2, we get

ϒm(V ) = lim
s→∞



(
s

γη

)mα

K (V ,s,γ,η)−
(

s
γη

)mα

ϒ0(V )−(
s

γη

)(m−1)α

Dα
θ W (V ,0)−

(
s

γη

)(m−2)α

D2α
θ W (V ,0)

−...−
(

s
γη

)α

D
(m−1)α
θ

W (V ,0)


= lim

s→∞
(KH [Dmα

θ W (V ,θ)] (s,γ,η))

= Dmα
θ W (V ,θ) ■

Remark 1 The inverse Khalouta transform of the series extension in Theorem 3 has
the form of the following multiple fractional power series

W (V ,θ) =
∞

∑
m=0

Dmα
θ

W (V ,0)
Γ(mα +1)

θ
mα ,0 < α ≤ 1,θ ≥ 0.

In the following theorem, we explain and determine the convergence conditions
of the new form of multiple fractional Taylor’s formula.

Theorem 4 Let W (V ,θ) be a piecewise continuous function defined on Rn ×R+

and of exponential order and let KH [W (V ,θ)] = K (V ,s,γ,η) be represented as
the new form of multiple fractional Taylor’s formula explained in Theorem 3. If∣∣∣KH

[
D

(k+1)α
θ

W (V ,θ)
]∣∣∣ ≤ T(V ) on Rn × (0,d] with 0 < α ≤ 1, then the remain-

der Rk(V ,s,γ,η) of the newform of multiple fractional Taylor’s formula satisfies
the following inequality

|Rk(V ,s,γ,η)| ≤
(

γη

s

)(k+1)α
T(V ).

4. Khalouta residual power series method (KHRPSM)

Theorem 5 Consider the following nonlinear fractional hyperbolic-like equations
with variable coefficients (1) under the initial conditions (2). Then the Khalouta frac-
tional power series solution of the proposed equation is described as an infinite series
expansion which rapidly converges to the exact solution as follows

W (V ,θ) = lim
k→∞

Wk(V ,θ),

where Wk(V ,θ) is the kth−approximate solution given by

Wk(V ,θ) =
k

∑
i=0

Wi(V )
θ iα

Γ(iα +1)
.
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PROOF To prove our result, we first define the following nonlinear operator

N (W (V ,θ)) =
N

∑
i, j=1

F1i j(V ,θ ,W )
∂ k+m

∂xk
i ∂xm

j
F2i j(Wxi ,Wx j)

+
N

∑
i=1

G1i(V ,θ ,W )
∂ p

∂xp
i
G2i(Wxi)+H (V ,θ ,W )+S (V ,θ).

Thus, equation (1) can be written in the form

D2α
θ W (V ,θ) = N (W (V ,θ)). (11)

Operating the Khalouta transform on both sides of equation (11) and using point
(1) of Theorem 1, we get

KH
[
D2α

θ W (V ,θ)
]
=KH [N (W (V ,θ))] . (12)

According to Theorem 1 and the initial conditions in equation (2), then equation
(12) becomes

K (V ,s,γ,η) = W (V ,0)+
(

γη

s

)α

Dα
θ W (V ,0)

+
(

γη

s

)2α

KH
[
N
(
KH−1 [K (V ,s,γ,η)]

)]
, (13)

where KH−1K (V ,s,γ,η) = W (V ,θ).
Based on Theorem 3, we assume that the approximate solution of the Khalouta

equation (13) has the following Khalouta fractional expansion

K (V ,s,γ,η) =
∞

∑
m=0

(
γη

s

)mα

ϒm(V ).

Following lim
s→∞

K (V ,s,γ,η) = ϒ0(V ) =W (V ,0) and using Theorem 3, we have

ϒ1(V ) =Dα
θ W (V ,0),

and the kth− Khalouta series solution take the following form

Kk(x,s,γ,η) =
k

∑
m=0

(
γη

s

)mα

ϒm(V )

= ϒ0(V )+
(

γη

s

)α

ϒ1(V )+
k

∑
m=2

(
γη

s

)mα

ϒm(V ).
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Now, we define separately the Khalouta fractional residual function of equation
(13) and the kth− Khalouta fractional residual function, as

KHRes(V ,s,γ,η) = K (V ,s,γ,η)−W (V ,0)−
(

γη

s

)α

Dα
θ W (V ,0)

−
(

γη

s

)2α

KH
[
N
(
KH−1 [K (V ,s,γ,η)]

)]
,

and

KHResk(V ,s,γ,η) = Kk(V ,s,γ,η)−W (V ,0)−
(

γη

s

)α

Dα
θ W (V ,0)

−
(

γη

s

)2α

KH
[
N
(
KH−1 [Kk(V ,s,γ,η)]

)]
. (14)

Substituting the series form of Kk(V ,s,γ,η) in equation (14) and multiplying

both sides by
(

s
γη

)kα

as follows

(
s

γη

)kα

KH [Resk(V ,s,γ,η)]

=

(
s

γη

)kα

 Kk(V ,s,γ,η)−W (V ,0)−
(

γη

s

)α

Dα
θ W (V ,0)

−
(

γη

s

)2α

KH
[
N
(
KH−1 [Kk(V ,s,γ,η)]

)]
 . (15)

Taking lim
s→∞

at both sides of equation (15)

lim
s→∞

(
s

γη

)kα

KH [Resk(V ,s,γ,η)]

= lim
s→∞

(
s

γη

)kα


(

s
γη

)kα

Kk(V ,s,γ,η)−W (V ,0)

−
(

γη

s

)α

Dα
θ W (V ,0)

−
(

γη

s

)2α

KH
[
N
(
KH−1 [Kk(V ,s,γ,η)]

)]

 .

Therefore, we solve the following system iteratively in order to obtain the
unknown coefficients ϒk(V )

lim
s→∞

(
s

γη

)kα

KHResk(V ,s,γ,η) = 0,k = 2,3,4, ...

Next, we collect the obtained results of ϒm(V ), and substitute them into the
series expansion (14) to find the form of the the kth− Khalouta series solutions
Kk(V ,s,γ,η).
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We apply the inverse Khalouta transform on the form (V ,s,γ,η) to obtain the
kth−approximate solutions of the original equation, as follows

Wk(V ,θ) =
k

∑
i=0

Wi(V )
θ iα

Γ(iα +1)
,

where Wi(V ) =Diα
θ W (V ,0).

Finally, the Khalouta fractional power series solution of equations (1) and (2),
is given by

W (V ,θ) = lim
k→∞

Wk(V ,θ)

= lim
k→∞

k

∑
i=0

Wi(V )
θ iα

Γ(iα +1)

=
∞

∑
i=0

Wi(V )
θ iα

Γ(iα +1)
.

Thus, the proof is completed. ■

5. Numerical experiment

Example 1 Let us consider the two dimensional nonlinear fractional hyperbolic-like
equation with variable coefficients [22]

D2α
θ W (x,y,θ) =

∂ 2

∂x∂y
(WxxWyy)−

∂ 2

∂x∂y
(xyWxWy)−W , (16)

under the initial conditions

W (x,y,0) = exy,Dα
θ W (x,y,0) = exy, (17)

W =
{
W (x,y,θ),(x,y,θ) ∈ R2 ×R+

}
and 1/2 < α ≤ 1.

By applying the same steps in KHRPSM as described in Section 3, then the
Khalouta fractional power series solution is given as

K (x,y,s,γ,η) =
∞

∑
m=0

(
γη

s

)mα

ϒm(x,y),

and the kth− Khalouta series solution, is given by

Kk(x,y,s,γ,η) = exy +
(

γη

s

)α

exy +
k

∑
m=2

(
γη

s

)mα

ϒm(x,y). (18)
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and the coefficients ϒm(x,y),m ≥ 2, are as follows

ϒ2(x,y) = −exy,

ϒ3(x,y) = −exy,

ϒ4(x,y) = exy,

ϒ5(x,y) = exy,

...

ϒ2k(x,y) = (−1)k exy,

ϒ2k+1(x,y) = (−1)k exy.

Now, putting the values of ϒm(x,y),m = 2,3,4, ...,2k,k2+ 1 into equation (18),
we obtain

Kk(x,y,s,γ,η) = exy +
(

γη

s

)α

exy −
(

γη

s

)2α

exy −
(

γη

s

)3α

exy +
(

γη

s

)4α

exy

+
(

γη

s

)5α

exy + ...+(−1)k
(

γη

s

)2kα

exy

+(−1)k
(

γη

s

)(2k+1)α
exy. (19)

Applying the inverse Khalouta transform on both sides of equation (19), we obtain

Wk(x,y,θ) = exy +
θ α

Γ(α +1)
exy − θ 2α

Γ(2α +1)
exy − θ 3α

Γ(3α +1)
exy +

θ 4α

Γ(4α +1)
exy

+...+(−1)k θ 2kα

Γ(2kα +1)
exy +(−1)k θ (2k+1)α

Γ((2k+1)α +1)
exy

=

(
1− θ 2α

Γ(2α +1)
+ .

θ 4α

Γ(4α +1)
+ ...+(−1)k θ 2kα

Γ(2kα +1)
exy
)

exy

+

(
θ α

Γ(α +1)
− θ 3α

Γ(3α +1)
+ ...+(−1)k θ (2k+1)α

Γ((2k+1)α +1)

)
exy

=

(
k

∑
i=0

(−1)i θ 2iα

Γ(2iα +1)
+

k

∑
i=0

(−1)k θ (2i+1)α

Γ((2i+1)α +1)

)
exy. (20)

As k → ∞, equation (20), can be expressed as the following

W (x,y,θ) =

(
∞

∑
i=0

(−1)i θ 2iα

Γ(2iα +1)
+

∞

∑
i=0

(−1)k θ (2i+1)α

Γ((2i+1)α +1)

)
exy

= (cos(θ α ,α)+ sin(θ α ,α))exy. (21)
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Now, if we substitute α = 1 in equation (21), we get the exact solution

W (x,θ) = (cos(θ)+ sin(θ))exy.

It is the same result that was obtained in [22].
Figures 1 and 2 show the 2D and 3D plots of KHRPSM in solving equations

(16)-(17). Table 1 shows the comparison of the 6th-order approximate solution and
the exact solution and their associated absolute errors for (16)-(17) for different
values of α . Numerical simulations show that the current technique’s solutions are
in good agreement with the exact results. The numerical solutions show that only
a few terms are sufficient for obtaining an approximate result, which is efficient,
accurate, and reliable.
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Fig. 1. 3D plots of the 6th-order approximate solution obtained by KHRPSM
and exact solution at y = 0.5
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Fig. 2. 2D plots of the 6th-order approximate solution obtained by KHRPSM
and exact solution at x = y = 0.5
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Table 1. Numerical values of the 6th-order approximate solution obtained by KHRPSM and exact
solution at x = y = 0.5

t α = 0.7 α = 0.8 α = 0.9 α = 1 Absolute error
WKHRPSM WKHRPSM WKHRPSM WKHRPSM Wexact |Wexact −WKHRPSM |

0.1 1.5207 1.4784 1.4394 1.4058 1.4058 1.8085×10−9

0.3 1.6652 1.6594 1.6375 1.6061 1.6061 1.3536×10−6

0.5 1.6750 1.7193 1.7411 1.7425 1.7424 2.9725×10−5

0.7 1.6137 1.6956 1.7634 1.8095 1.8093 6.7065×10−2

0.9 1.5164 1.6112 1.714 1.805 1.8040 1.0547×10−3

2

6. Conclusion

This work presents a new coupling method called the Khalouta residual power
series method (KHRPSM) which has great potential in constructing approximate
solutions and even exact solutions for nonlinear fractional hyperbolic-like equations
with variable coefficients. To understand the analytical procedure of the above
method, a numerical example is presented for the analytical result of the proposed
problem. The effectiveness of KHRPSM has been proven through graphical and
numerical results. We can observe from these graphs and tables that the approximate
results obtained by KHRPSM are in perfect agreement with their respective exact
solutions. The advantage of KHRPSM is that it significantly reduces the numerical
calculations required to construct the solutions for this class of equations compared
to existing methods, e.g., the differential transform method (DTM), homotopy per-
turbation method (HPM), and the Adomian decomposition method (ADM). Thus,
we can conclude that our new technique is easy to apply, accurate, adaptable, and
effective depending on the obtained results. Our future goal is to apply the KHRPSM
to other types of NFPDEs appearing in other scientific fields.
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