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Abstract. In this research, we present a real-world simulation to evaluate the pollution
dynamics within a network of three interconnected lakes, facilitated by canals. Using
the finite element method (FEM), we handle three input models: linear, periodic, and
exponentially decaying. This procedure turns the specified model into an algebraic equations
system. By analyzing the residual error function (REF), we can verify the offered technique’s
accuracy and efficiency. The numerical outputs are contrasted with that of the fourth-order
Runge-Kutta (RK4M). Our results confirm that the presented algorithm is a practical tool
to simulate the solution of such models. Key advantages of the supposed approach include
simplicity, absence of secular components, and independence from perturbation parameters.

MSC 2010: 41A10, 65N12, 65N35
Keywords: pollution model for the lakes system, finite element method, RK4M, REF

1. Introduction

The goal of this work is to characterize the pollution of the three-lakes system
depicted in Figure 1 [1]. Every lake is regarded as a sizable section, and the canals that
connect them are seen as pipes with distinct flow directions. The first lake receives an
initial addition of pollutants at a fixed rate that may vary over time. For this reason, we
are curious about each lake’s current pollution status. It is assumed that the water level
in each lake is fixed, and we presume that some mixing procedure evenly distributes
the pollutants in each lake. Additionally, we take it for granted that pollution never
changes and never takes on new forms. This pollution model for a network of three
lakes joined by waterways can be modeled mathematically. This significant model
has been examined in numerous research studies [2].

For the pollution source, we will consider the periodic, exponentially decaying,
and linear input models. As far as the authors are aware, the fact that published works
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have referenced the periodic and exponential decaying input models as potential
behaviors for the source of pollution is very limited. Here are many research papers
that have examined the pollution model for lakes in its classical and fractional
formulation [3–6].

In this field, numerous academics have effectively employed a variety of numeri-
cal techniques after these earlier studies [7, 8]. A MATLAB solver, called the fourth-
-order boundary value problem (bvp4c), was used to solve systems of ordinary differ-
ential equations resulting from three problems in fluid mechanics, respectively, time-
-dependent Blasius-Rayleigh-Stokes flow conveying hybrid nanofluid and heat trans-
fer induced by non-Fourier heat flux and transitive magnetic field [9]; buoyancy effect
on the stagnation point flow of a hybrid nanofluid toward a vertical plate in a saturated
porous medium [10]; stagnation point flow of a water-based graphene-oxide over
a stretching/shrinking sheet under an induced magnetic field with a homogeneous-
-heterogeneous chemical reactions [11]. Additionally, the FEM is one of these
techniques [12, 13]. When dealing with this group of equations, the FEM has some
advantages because any numerical programming may simply produce the coefficients
for the solution. Because of this, the FEM operates much more quickly than the other
methods. Also, one of the great benefits of the FEM is that it allows for the safe
simulation of conditions that would be dangerous or difficult to replicate in a physical
test environment. The results produced by software using this method are extremely
detailed and accurate, and provide a wide range of conditions to test against. Kochnev
used the FEM to study the atom [14]. The condensed generalized finite element
approach has been thoroughly examined by Zhang & Cui [15]. The resilient and
trustworthy FEMs used in poromechanics have been explored by Bertrand et al. [16].

In this paper, we developed the FEM for solving the proposed model, and some
stability concepts & existence and uniqueness are also considered.

2. Pollution model formulation

A set of lakes connected by waterways are modeled as large portions connected
by pipes [17]. A system with three lakes is shown in Figure 1. For instance, at t = 0,
a factory b(t) delivers a pollutant at a rate of b into one lake. As seen in [18], the
contaminated water then finds its way to the other lakes via pipelines. Assume that all
of the lakes have the same amount of pollution and that each lake’s water level stays
constant. Predicting each lake’s pollution rate while accounting for these assumptions
for t ≥ 0 is our goal. To comprehend the dynamic behavior of the lakes, we will
utilize the variables Vk and ψk(t), for k = 1,2,3, to represent the water volume and
pollutant count in lake k, respectively. The following represents the lake k’s pollution
concentration at t ≥ 0:

ck(t) =
ψk(t)

Vk
. (1)
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Fig. 1. System of three lakes with waterways connecting them [17]

The flux of pollution rik(t) evaporating flowing from Lake k into Lake i within
the time t is described by the following equation (this outcome occurs by assuming
further that there is a constant flow rate Fik between lakes k and i):

rik(t) = Fik ck(t) =
Fikψk(t)

Vk
. (2)

By giving each lake the following application of the principle:

The difference between the rates of input and output equals the pollutant change rate,
we obtain:

dψ1

dt
=

F13

V3
ψ3(t)−

F31

V1
ψ1(t)−

F21

V1
ψ1(t)+b(t),

dψ2

dt
=

F21

V1
ψ1(t)−

F32

V2
ψ2(t),

dψ3

dt
=

F31

V1
ψ1(t)+

F32

V2
ψ2(t)−

F13

V3
ψ3(t).

(3)

Assuming that the lakes are originally devoid of pollution, the model (3) has the
following initial conditions:

ψ1(0) = ψ2(0) = ψ3(0) = 0. (4)

Every lake’s rate of incoming flow equals its rate of departing flow because the
volume of water in each lake stays the same for time t ≥ 0. The following flow rate
situations consequently emerge:

Lake 1 : F13 = F21 +F31,

Lake 2 : F21 = F32,

Lake 3 : F31 +F32 = F13.

(5)
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Remark: From summing the three equations in the model (3), we can obtain the
following formula:

d
dt
[ψ1(t)+ψ2(t)+ψ3(t)] = b(t), (6)

this formula and the initial conditions (4) imply that the total pollution in the three
lakes can be given by the following form:

ψ1(t)+ψ2(t)+ψ3(t) =
∫ t

0
b(t)dt. (7)

This formula will be used later to verify the validity and accuracy of the proposed
numerical method in the next sections.

3. Solution process using the FEM

A powerful method for numerically solving ODEs is FEM. This method divides
the domain into its constituent Finite Elements. Additionally, this approach is a flexi-
ble numerical technique used to research a variety of issues, including fluid mechan-
ics, heat transport, and others.
The stages listed below will be used to implement the FEM, according to [19]:

1. Finite-element discretization:
These elements will be combined to create the finite-element mesh.

2. Element equations derivation:

• For every common element removed from the suggested mesh, we offer
the variational formulation (VF) of the issue.

• The element equations are then used to replace the VF’s estimated
solution.

• The element interpolation functions are used to construct the stiffness
matrix, sometimes referred to as the element matrix.

3. Collect the element equations:
Numerous other algebraic equations can be created by combining the algebraic
equations.

4. Insert the B.Cs:
On top of the gathered equations, we apply the fundamental and natural B.Cs.

5. The ensuing algebraic equations solution:
We analyze the set of algebraic equations encountered using any efficient
numerical method.
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3.1. Variational in formulation

The variational form related to Eqs. (3) is constructed over a typical linear element
(te, te+1) as follows:∫ te+1

te
φ1

[
ψ̇1 −

F13

V3
ψ3(t)+

F31

V1
ψ1(t)+

F21

V1
ψ1(t)−b(t)

]
dt, (8)

∫ te+1

te
φ2

[
ψ̇2 −

F21

V1
ψ1(t)+

F32

V2
ψ2(t)

]
dt, (9)

∫ te+1

te
φ3

[
ψ̇3 −

F31

V1
ψ1(t)−

F32

V2
ψ2(t)+

F13

V3
ψ3(t)

]
dt, (10)

where the arbitrary test functions φ1, φ2, φ3 can be seen as a change in ψ1, ψ2, ψ3.

3.2. Finite element formulation

We have

ψ1(t) =
2

∑
ℓ=1

ψ1,ℓϒℓ, ψ2(t) =
2

∑
ℓ=1

ψ2,ℓϒℓ, ψ3(t) =
2

∑
ℓ=1

ψ3,ℓϒℓ, (11)

with φ1 = φ2 = φ3 = ϒℓ, ℓ= 1,2.
The form functions for a typical element (te, te+1) used in our calculations are deter-
mined by:
Linear element:

ϒ
e
1 =

te+1 − t
te+1 − te

, ϒ
e
2 =

t − te
te+1 − te

, te ≤ t ≤ te+1. (12)

Quadratic element:

ϒ
e
1 =

(te+1 − te −2t)(te+1 − t)
(te+1 − te)2 , ϒ

e
2 =

4(t − te)(te+1 − t)
(te+1 − te)2 ,

ϒ
e
3 =−(te+1 − te −2t)(t − te)

(te+1 − te)2 , te ≤ t ≤ te+1.

(13)

The obtained equations’ FEM can be described as follows: [
A11] [

A12] [
A13][

A21] [
A22] [

A23][
A31] [

A32] [
A33]

 [ψ1]
[ψ2]
[ψ3]

=

 [
c1][
c2][
c3]

 , (14)
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where [Ars] and [cr] (r,s = 1,2,3) are realized as:

A11
i j =

∫ te+1

te

(
ϒi

dϒ j

dt
+

F21 +F31

V1
(ϒiϒ j)

)
dt, A12

i j = 0, A13
i j =−

∫ te+1

te

F13

V3
(ϒiϒ j) dt,

A21
i j =−

∫ te+1

te

F21

V1
(ϒiϒ j) dt, A22

i j =
∫ te+1

te

(
ϒi

dϒ j

dt
+

F32

V2
(ϒiϒ j)

)
dt, A23

i j = 0,

A31
i j =−

∫ te+1

te

F31

V1
(ϒiϒ j) dt, A32

i j =−
∫ te+1

te

F32

V2
(ϒiϒ j) dt,

A33
i j =

∫ te+1

te

(
ϒi

dϒ j

dt
+

F13

V3
(ϒiϒ j)

)
dt, c1

i =
∫ te+1

te
(ϒi b(t))dt, c2

i = 0, c3
i = 0.

(15)

4. Some stability concepts & existence and uniqueness

In the past few decades, several stability ideas have been created, such as exponen-
tial stability, Lyapunov stability, and others like [20,21]. Next, we verify the stability
of the suggested problem using the Banach contraction principle. Let’s review some
of the key terms from fixed point theory to understand this.

Definition 1. Let (Ω, |.|) be a metric space. A contraction mapping is defined as
follows for any mapping A : Ω → Ω: for every ϕ1, ϕ2 ∈ Ω and 0 < γ < 1, then:

|Aϕ1 −Aϕ2| ≤ γ |ϕ1 −ϕ2|. (16)

In other words, for every pair of points ϕ1, ϕ2 ∈ Ω, is greater than that of points
ϕ1, ϕ2, the ratio,

|Aϕ1 −Aϕ2|
|ϕ1 −ϕ2|

,

doesn’t go above the less-than-one positive constant γ .
Let’s also review Picard’s differential equation existence and uniqueness theorem

in the next subsection. Thus, we take into account the first-order IVP that follows:

Ψ̇(t) = A(Ψ, t), Ψ(t0) = Ψ0, (17)

with two real numbers, t0 and Ψ0, provided.

4.1. Existence and uniqueness

In this subsection, we use the Banach fixed point theorem and the Picard-Lindelöf
to show adequate conditions for the existence of a unique solution for the model (17).
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Theorem 1. [22]
Let A(Ψ, t) be continuous on the domain

R̄ = {(Ψ, t) : |t − t0| ≤ ξ , ||Ψ−Ψ0|| ≤ σ},

and thus bounded on R̄, i.e. ||A(Ψ, t)|| ≤ χ . Suppose that A satisfies a Lipschitz
condition on R̄ concerning its first argument, meaning there exists a constant κ such
that

||A(Ψ1, t)−A(Ψ2, t)|| ≤ κ ||Ψ1 −Ψ2||, ∀ (Ψ1, t), (Ψ2, t) ∈ R̄.

Then the problem (12) has a unique solution that exists on an interval [t0 − γ, t0 + γ],
where

γ < min
{

ξ ,
σ

χ
,

1
κ

}
. (18)

PROOF You can find the proof in [22]. ■

5. Numerical simulation

In this part, we address the studied model (3) for three different pollution models
and offer a numerical simulation on test examples in [0,20] to test the accuracy of
the offered algorithm. However, for the following parameters, we employ the same
values throughout all figures:

F21 = 18mi3/year, F32 = 18mi3/year, F31 = 20mi3/year, F13 = 38mi3/year,

V1 = 2900mi3, V2 = 850mi3, V3 = 1180mi3

(19)

We will examine the subsequent three input models [23].
Also, we provide a comparison between the results obtained using the recommended
approach and the RK4M in each case. In addition, we assess the quality of the
presented scheme using the REF [24].
Each case with initial conditions of zeros and the parameter values listed in (19).

Case 1: Periodic input model
When adding pollutants to Lake 1 on a regular basis, this input model is employed.

Consider this, for instance:

b(t) = α +β sin(ω t),

where ω indicates the frequency of fluctuations, β is the amplitude of fluctuations,
and α is the average concentration of pollutants input. Considering α = β = 2,
ω = 1.
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The numerical results for the examined example, which were obtained through the
use of the suggested methodology, as shown in Figures 2 and 3.

1. In Figure 2, we contrast the results produced using the suggested method and
those acquired using the RK4 method in this comparison.

2. In Figure 3, we determine and display the REF of the approximation.

Fig. 2. The solution of case 1, ψi(t), i = 1,2,3 by the FEM and RK4 methods

Fig. 3. The REF of ψi(t), i = 1,2,3 for case 1
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Case 2: Exponentially decaying input model
This input model is equivalent to a large-scale pollutant dump. We use the follow-

ing as an example:

b(t) = µ e−θ t ,

where µ = 150, θ = 15.
The numerical results for the examined example, which were obtained through
the use of the suggested methodology, as shown in Figures 4 and 5.

Fig. 4. The solution of case 2, ψi(t), i = 1,2,3 by the FEM and RK4 methods

Fig. 5. The REF of ψi(t), i = 1,2,3 for case 2
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1. In Figure 4, we contrast the results produced using the suggested method and
those acquired using the RK4 method in this comparison.

2. In Figure 5, we determine and display the REF of the approximation.

Case 3: Linear input model
This input model is used when the pollutant is introduced into the first lake

at a linear concentration. As an illustration, consider this:

b(t) = λ t,

where λ = 200.
The numerical results for this example under investigation were obtained through
the use of the suggested methodology, as shown in Figures 6 and 7.

1. In Figure 6, we compare the outcomes obtained using the RK4 approach versus
the ones generated by the recommended method.

2. We calculate and plot the estimated solution’s REF in Figure 7.
These results show that the efficiency and output of the procedure are greatly
enhanced by the suggested methodology.

Fig. 6. The solution of case 3, ψi(t), i = 1,2,3 by the FEM and RK4 methods

In addition, to present more numerical validation of the proposed numerical
method, we computed the two sides of the criterion (7) through Tables 1-3 for the
three given cases of the model, Periodic, Exponentially, and Linear respectively.
The results presented in these three tables confirm that the proposed method is
highly effective for the numerical analysis of the model under investigation, yield-
ing significantly improved outcomes.
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Fig. 7. The REF of ψi(t), i = 1,2,3 for case 3

Table 1. Comparison of the L.H.S and R.H.S of the criterion (7) for case 1

t ψ1(t)+ψ2(t)+ψ3(t)
∫ t

0
b(t)dt

0.0
2.0
4.0
6.0
8.0
10.0
12.0
14.0
16.0
18.0
20.0

0.000000
6.832290
11.30730
12.07970
18.29100
23.67810
24.31230
29.72650
35.91530
36.67940
41.18380

0.000000
6.832294
11.30729
12.07966
18.29100
23.67814
24.31229
29.72653
35.91532
36.67937
41.18384

Table 2. Comparison of the L.H.S and R.H.S of the criterion (7) for case 2

t ψ1(t)+ψ2(t)+ψ3(t)
∫ t

0
b(t)dt

0.0
2.0
4.0
6.0
8.0
10.0
12.0
14.0
16.0
18.0
20.0

0.000000
329.6800
550.6710
698.8060
798.1040
864.6650
909.2820
939.1900
959.2380
972.6760
981.6840

0.000000
329.6800
550.6710
698.8060
798.1040
864.6650
909.2820
939.1900
959.2380
972.6760
981.6840
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Table 3. Comparison of the L.H.S and R.H.S of the criterion (7) for case 3

t ψ1(t)+ψ2(t)+ψ3(t)
∫ t

0
b(t)dt

0.0
2.0
4.0
6.0
8.0
10.0
12.0
14.0
16.0
18.0
20.0

0.00
400
1600
3600
6400
10000
14400
19600
25600
32400
40000

0.00
400
1600
3600
6400
10000
14400
19600
25600
32400
40000

6. Conclusions

The goal of this manuscript is to use the FEM to investigate the dynamic be-
havior of a lake pollution model. In this attempt, the REF was determined using
the numerical solutions of the studied mathematical model. We concluded that the
proposed model analysis method works. We can control and reduce error precision
by adding terms from the series of approximation solutions. RK4 results are com-
parable to graphical results. Our results also demonstrate the accuracy and compu-
tational efficiency of the proposed method. As an extension of this work, we will
address the problem in the future with a more in-depth study, either by presenting
a theoretical study to address the stability and convergence of the method used or by
trying to provide an improvement in the proposed method.
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