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Abstract. The purpose of this study is to analyse the effect of elevated temperature on oxygen 
distribution in biological tissue. The effect of temperature and thermal tissue damage on the 
values of thermophysical parameters was considered. Changes in the perfusion coefficient 
affect blood velocity in the capillary, thereby influencing the distribution of partial oxygen 
pressure. In the tissue area, the effect of myoglobin was taken into account. Furthermore, 
the effect of mitochondrial clustering on oxygen distribution was also analysed. The finite 
difference method and the shooting method were used in the numerical implementation stage.  
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1. Introduction  

One of the most important functions of blood is to carry oxygen from the lungs 
to the tissues. Gas exchange between blood and tissue takes place in the smallest 
blood vessels, the capillaries. Elevated temperature, caused by factors such as exter- 
nal heat, can alter the properties of tissues and, in some cases, even cause thermal 
damage, disrupting the vasculature [1, 2] and oxygen delivery [3]. Factors that can 
delay the onset of hypoxia or lack of oxygen in the body include myoglobin and 
the phenomenon of mitochondrial clustering. 

Myoglobin (Mb) is a protein responsible for oxygen transport and local oxygen 
storage. Through a dense network of capillaries, oxygen is transferred from hemo- 
globin to tissue, where oxidative phosphorylation occurs, resulting in the production 
of energy in the form of ATP in the mitochondria. Additionally, myoglobin improves 
oxygen diffusion in areas with low partial oxygen pressure, which improves tissue 
resistance to hypoxia, contributing to the maintenance of oxygen homeostasis  
[4-6]. Mitochondria, on the other hand, have the ability to move and relocate within 
the cell, thus also influencing the regulation of various cellular processes. In cases 



M. Zadoń, M. Jasiński 134

of oxygen deficiency, they tend to accumulate near the capillaries, where oxygen 
access is facilitated [3, 7]. 

Mathematical models of the oxygen distribution are often based on the Krogh 
cylinder theory. A model takes into account the capillary and surrounding cylindrical 
area of the tissue. The equations for both subdomains are included in this model, 
with partial oxygen pressure used as the main variable [5, 8]. Furthermore, the Krogh 
model can incorporate equations related to, for example, hemoglobin saturation in 
the capillary subdomain and myoglobin saturation in the tissue subdomain [4-6]. 
Although the author of this model initially adopted numerous simplifications, his 
work has become the foundation for many subsequent studies, including on various 
therapies, the presence of cancers, and angiogenesis processes in the body [3-5]. 
For an extensive discussion of various aspects of the theory of oxygen transport to 
tissue, including issues related to the Krogh cylinder model, see [4]. 

The temperature field in biological tissue is modeled using one of the selected 
bioheat transfer equations: Pennes, Cattaneo-Vernotte or dual-phase lag (DPL) 
equations in which additional components of internal heat sources related to perfu-
sion and metabolism are considered [3, 9-13]. In addition, the variation of the 
thermophysical parameters of the tissue depending on temperature and/or thermal 
damage is taken into account, the latter being most often evaluated on the basis of 
the so-called Arrhenius scheme [1, 2, 14]. 

The work concerns the analysis of the effect of elevated temperature on the  
distribution of oxygen in biological tissue. The bioheat transfer model was used, 
represented by a 3D area of homogeneous tissue and an oxygen distribution model 
in the form of an axisymmetric Krogh cylinder model, the latter using the values of 
the variable perfusion coefficient calculated in the bioheat transfer task. On the basis 
of this coefficient, the blood velocity in the capillary, which is one of the parame-
ters of the oxygen distribution model, is calculated. Models for combined analysis 
of bioheat and oxygen distribution are rare in the literature; moreover, to the best  
of the authors’ knowledge, a model that takes into account the effect of myoglobin 
on oxygen distribution in the tissue during heating has not been considered to date. 
In addition, the presented model takes into account the phenomenon of mitochondria 
clustering through a new proposed function in which the oxygen demand depends 
on the level of oxygen partial pressure at a given section of the capillary.  

2. Governing equations 

In this work, a model in the form of a cubic biological tissue, on which an exter- 
nal heat flux operates, and an axisymmetric model of the so-called Krogh cylinder 
were used to analyze oxygen distribution (Fig. 1 (left)). The latter corresponds to 
a capillary, surrounded by tissue, in which oxygen from the blood reaches the tissue 
area. Note that capillary sizes are of the order of micrometers (in this work 
Rc = 2.5 m, Rt = 25 m, Lt = 500 m), while the domain dimensions for thermal 
analysis are 1.5 × 1.5 × 1.5 cm. For this reason, the entire structure of the blood vessel 
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is not considered, but a single Krogh cylinder, placed at a selected point located  
in the bioheat task domain is taken into account.  

Thermal analysis is based on the bioheat transport equation in the Pennes formu- 
lation with adequate boundary initial conditions [3, 10] 
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where  [W m–1 K–1] is the thermal conductivity of tissue, c [J m–3 K–1] is the volumet- 
ric specific heat, Qperf [W m–3] and Qmet [W m–3] are heat sources related to perfusion 
and metabolism, respectively, w [(m3

blood/s)/(m3
tissue)] is the perfusion coefficient, 

cB [J m–3 K–1] is the volumetric specific heat of the blood, and TB is the arterial blood 

temperature. T stands for temperature, while Tɺ  is its time derivative, q0,max [W m–2] 
denotes the maximal value of the heat flux, rimp is the radius of the impulse, texp [s] 
is the exposure time, Tinit denotes the initial tissue temperature. The boundary 0 is 
the outer surface of the tissue domain on which the heat flux q0 is applied, while c 
is the remaining part of the boundary. 

Due to the increase in tissue temperature, its thermophysical parameters may 
change. In this study, the thermal conductivity varies with temperature (in Kelvin) 
[1], and the tissue volumetric specific heat of the tissue is related to the thermal 
conductivity [15] according to the functions presented in the article [14]. Tissue 
exposed to an external heat impulse can be thermally damaged. Using the Arrhenius 
scheme, the degree of thermal damage to the tissue is estimated based on the for-
mula [2, 10] 
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where A [s–1] is the preexponential factor, E [J mol–1] is the activation energy, and 
R [J mol–1 K–1] is the universal gas constant. The integral values of Arr = 1 and 
Arr = 4.6 are used as a threshold for tissue necrosis, corresponding to a probability 
of 63 % and 99 % of cell death at a given point x. 

According to the literature [2], the perfusion coefficient is defined as a function 
that represents the phenomena that occur in the tissue as the temperature increases 
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where w0 [s1] is the initial blood perfusion coefficient and mi are the polynomial 
coefficients. The coefficient values are assumed to be m0 = 1, m1 = 25, m2 = –260 
for Arr = [0,0.1] (the initial increase in the perfusion due to vasodilation), m0 = 1, 
m1 = –1, m2 = 0 for Arr = (0.1,1] (the stage of decrease in blood flow resulting from 
the vasculature shut down), while for Arr > 1 m0 = m1 = m2 = 0. 

The value of the perfusion coefficient calculated on the base (3) is then used to 
calculate blood velocity in the capillary ub [cm s–1], a parameter found in the oxygen 
distribution model. As already mentioned, the dimensions of the two models used 
are at different scales (cm vs. m), so the entire capillary network is not considered 
but only a single Krogh cylinder. Therefore, the relationship between the thermal 
damage-dependent perfusion coefficient w(Arr) and the blood velocity in the capil-
lary is the link between the two models used. It is in the form of [3, 16] 
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Figure 1 (right) illustrates the relationship between the oxygen partial pressure 
and the saturation of myoglobin (Mb) and hemoglobin (Hb). Knowledge of these 
relationships is essential in the oxygen distribution model, and the level of satura-
tion of hemoglobin SHb and myoglobin SMb is calculated as follows [4, 5, 8, 16] 
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where P50 [mmHg] is the half-maximal hemoglobin saturation, n is the Hill coeffi-
cient, P50,Mb [mmHg] is the half-maximal myoglobin saturation. The following  
parameters were assumed for the dissociation curves shown in Figure 1 (right): 
n = 2.57, P50 = 27 mmHg, P50,Mb = 5 mmHg. 
 

     
Fig. 1. Axisymmetric Krogh cylinder model, oxyhemoglobin, and myoglobin-O2  

dissociation curves 
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In this work, two separate equations for the radial and axial directions for the 
oxygen distribution model have been considered. The following governing equations 
with boundary conditions were used to describe the radial distribution of oxygen  
in the tissue subdomain [5, 6, 14] 

 

 

0
( )( ) ( )1

: ( ), ( )
( )

( )
: 2 ( )

( )
: 0

Mb tt t
t t Mb Mb t t t t

crit t

t
c c t b t

t
t

d S PdP r M P rd
r rK rc D M P M P

r dr dr dr P P r

dP r
r R R K k P P r

dr

dP r
r R

dr

 
    

 

   

 

 (6) 

where Pt [mmHg] is the partial pressure of oxygen in the tissue, Kt  
[(cm2 s–1)(mol cm–3 mmHg–1)] is the Krogh diffusion coefficient, cMb [mol cm–3]  
is the tissue concentration of myoglobin, DMb [cm2 s–1] is the diffusion coefficient 
in the tissue, M0 [mol cm–3 s–1] is the oxygen demand, Pcrit [mmHg] is the half- 
-maximum oxygen consumption, Pb [mmHg] is a partial pressure of oxygen in the 
blood, k [(cm2 s–1)(mol cm–3 mmHg–1)] is the mass transfer coefficient. 

It should be noted that this type of model has not yet been used in analysis related 
to the presence of oxygen in the tissue. While the main assumptions of the basic 
equation to account for the influence of myoglobin come from [6], the oxygen con-
sumption model Mt (Pt) in the form of Michaelis-Menten kinetics was introduced, 
and a boundary condition at the capillary-tissue interface was adopted, assuming 
instances of intravascular resistance during oxygen diffusion into the tissue area [16]. 
Both elements make it possible to more accurately reflect the processes occurring 
during the phenomenon under study. 

For the axial direction, oxygen partial pressure in the blood is given by [16] 
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where Qb [cm3 s–1] is the blood flow rate in the capillary and κb [mol cm–3
blood] is 

the oxygen carrying capacity of the blood.  
In summary, in the first step of analysis, the bioheat transfer task is solved,  

the temperature values (Eq. (1)), the Arrhenius integral (Eq. (2)) and the perfusion 
coefficient (Eq. (3)) are calculated, then, for a selected point of the bioheat problem 
domain and selected time steps, the oxygen distribution is estimated on the basis of 
equations (5)-(7), with the blood velocity in the capillary calculated using (4). 
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3. Methods of solution 

In the numerical implementation stage, the explicit scheme of the finite-differ- 
ence method was used to solve the bioheat transfer problem, while the shooting 
method was applied to solve the task of determining the distribution of oxygen  
partial pressure in the Krogh cylinder model. Figure 2 on the left shows the differ- 
ential grid with nodes where the results of solving the bioheat transfer equation were 
obtained. For the considered transient thermal analysis model in 3D, a 7 – point 
stencil was used (Fig. 2 (right)). 
 

       
Fig. 2. Differential grid and the 7-point stencil used in the bioheat transfer problem 

Taking into account the differential quotients presented in the paper [14],  
the equation for the central node of the stencil can be written in its final form: 
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To solve the model related to the oxygen distribution in the radial direction,  
the shooting method was used. The idea of this method is to transform a boundary 
value problem (BVP) into an initial value problem (IVP). At first, the boundary 
condition at the selected boundary, denoted Γshoot , is used as the initial condition  
for the IVP. However, the second initial condition must be guessed. In the next 
step, the value of the obtained IVP solution is compared with the known boundary 
condition at the opposite boundary Γtarget . The procedure is repeated iteratively until 
the results agree. To estimate the guess value, approximate methods are used to 
solve equations, and the initial problem is solved using algorithms for solving ordi-
nary differential equations. This paper uses the Newton method and the 4th-order 
Runge-Kutta method and assumes r = Rc as Γtarget [17]. 

The Newton method for solving nonlinear equations requires the definition of 
guess values in consecutive iterations. 
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Then, the solution of two IVPs is found, one resulting from the BVP transfor-
mation (equations (6) with (5)) and an additional one resulting from the use of the 
Newton method. 
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After finding the solution of IVP, the following differences are checked: 
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After determination of the partial pressure in tissue Pt in the radial direction for 
a given node m, the saturation SHb is calculated in the next node m + 1 on the basis 
of (cf. equation (7)) 
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where nz is the number of nodes in the axial direction. Next, the partial pressure in 
the capillary Pb in the node m + 1 is also determined using the equation (5). 

4. Results of computations 

In the study, a biological tissue domain in the shape of a cube 15 × 15 × 15 mm 
was analysed. To reduce computation time, only a quarter of the area was considered, 
and the number of nodes 76 × 76 × 151 needed for discretisation using the finite  
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difference method. The following thermophysical parameters were used for heat 
transfer calculations: cB = 3.9962 MJ m–3 K–1, w0 = 0.041 s–1, Qmet = 245 W m–3, 
TB = 37 °C, while for boundary-initial condition: q0,max = 18 000 W m–2, texp = 22 s, 
Tinit = 37 °C. The thermal damage model assumes the following values: 
A = 3.1·1098 s–1, E = 6.27∙105 J mol–1, R = 8.314 J mol–1 K–1 [3, 18]. 

The following data were used in the calculations for the oxygen distribution model: 
Rc = 2.5 µm, Rt = 25 µm, Lt = 500 µm, Kt = 1.9845·10–14 (cm2 s–1)(mol cm–3 mmHg–1), 
Pcrit = 1 mmHg, M0 = 5·10–8 mol cm–3 s–1, k = 2.79·10–13 (cm2 s–1)(mol cm–3 mmHg–1), 
Pb inlet = 100 mmHg, κb = 8.9286·10–6 mol cm–3

blood, n = 2.57, P50 = 27 mmHg [3, 5, 6, 16]. 
For the analysis of the impact of myoglobin, the following data related to oxygen 
transfer were used: cMb = 5·10–7 mol cm–3, DMb = 0.7·10–6 cm2 s–1, P50,Mb = 5 mmHg 
[4, 6]. When analysing the effect of mitochondrial clustering, the parameters  
associated with myoglobin (cMb, DMb, P50,Mb) were assumed to be equal to zero in  
equation (6). 

Figure 3 (left) shows the temperature distribution in the cube-shaped domain  
of tissue under consideration for 22 s, while Figure 3 (right) presents temperature 
courses at five selected control points within the same domain. Subsequently,  
the courses of the Arrhenius integral (Fig. 4 (left)) and the perfusion coefficient 
(Fig. 4 (right)) were determined. The coordinates of the control points are [cm]:  
A (0, 0, 0.273), B (0, 0, 0.462), C (0, 0, 0.482), D (0, 0, 0.502), E (0, 0, 0.651). 
 

       
Fig. 3. Temperature distribution in the tissue for t = 22 s and temperature courses  

at selected nodes 

As the temperature increases, there is a simultaneous increase in perfusion,  
resulting from the phenomenon of vasodilation. However, further elevation of the 
temperature leads to progressive thermal damage, ultimately resulting in the disap-
pearance of perfusion. For the further calculations, point B was chosen to consider 
the Krogh cylinder, i.e. the oxygen distribution. For this point, the blood velocity  
in the capillary was calculated based on the course of the perfusion coefficient. 
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Fig. 4. Arrhenius integral and perfusion coefficient courses in selected nodes 

For the analysis of the influence of mitochondria clustering on oxygen distribu-
tion, a new function is proposed. The tissue subdomain is divided into two regions: 
the one adjacent to the capillary (Rc  r  (Rt – Rc)/2), and the remaining region  
((Rt – Rc)/2 < r  Rt). Additionally, a threshold of 40 mmHg was assumed, as levels 
below this may result in tissue hypoxia. When Pt (Rc)  40 mmHg, a constant value 
of M0 is assumed for both regions, while for Pt (Rc) < 40 mmHg, an oxygen demand 
value is equal to M0·(1 + r/Rt) in the adjacent region, and M0·(1 – r/Rt) in the re-
maining region. Figure 5 shows a comparison of the results for two variants of the 
calculation, for M0 = const, and the calculation with a function for the clustering  
of mitochondria. For the radial direction, the first curve is for the capillary inlet 
(z = 0), while the others are for z = Lt/2. The curves in the axial direction show the 
oxygen pressure in the capillary, indicating the onset of hypoxia after 22 s for both 
cases, with the difference that the mitochondrial clustering phenomenon caused  
a significant delay, and hypoxia occurred at z = 0.035 cm. 
 

  
Fig. 5. Partial pressure of the oxygen distribution in the radial and axial directions for the case 

with and without mitochondrial clustering 
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The analysis also took into account the effect of myoglobin. Figure 6 shows  
the distributions of oxygen partial pressure in the radial and axial directions, with 
the distinction between the results obtained with and without consideration of  
myoglobin (cMb = 0, DMb = 0, P50,Mb = 0). The distributions obtained confirm that 
myoglobin causes a slight delay in the appearance of hypoxia (t = 22 s).  

The results of the oxygen distribution were compared with those reported in [6] 
and [16] (Fig. 7). For the results presented in [6], a comparison was made between 
the results for cases with and without myoglobin, noting that the oxygen consump-
tion model in [6] was assumed to be zero-order kinetics, which, compared to the 
Michaelis-Menten kinetics used in the current work, always results in a much 
greater decrease in level of partial oxygen partial pressure in the radial direction  
in the tissue subdomain [4, 16]. Moreover, in [6], on the capillary-tissue interface, 
continuity of pressure was assumed, while in the current model the condition taking 
into account intravascular resistance was considered, which must mean lower Pt (Rc) 
for the current model. Therefore, it can be concluded that the differences found in this 
case are justified, and the location of our results relative to the results of [6] is correct. 
 

  
Fig. 6. Partial pressure of the oxygen distribution in radial and axial directions for the case 

with and without myoglobin 

    
Fig. 7. Comparison of the results of the current model with the results in [6] and [16] and 

the results obtained for the current model using Hill and Adair ODCs 
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The model of [16] included intravascular resistance and a slightly different  
variant of mitochondria clustering. The results from the current model agree well 
with the results of this work; only the value of the Pb value is slightly lower by less 
than 2 mmHg. 

In addition, Figure 7 (right) compares the results obtained from our model using 
different oxyhemoglobin dissociation curves. While the current model used Hill ODC, 
the results obtained using Adair ODC (also used in [6]) give very similar results,  
so it can be concluded that the choice of ODC did not matter much in the case  
studied. We have previously given a broader discussion and comparison of models 
with different ODCs in [14]. 

5. Conclusions 

The results of the calculations indicate significantly that an external heat impulse 
influences the distribution of oxygen in tissue. Despite the cessation of impulse  
exposure after 22 s, the heat wave migrated toward the interior of the tissue (Figs. 3 
(right) and 4), causing an increase in the value of tissue damage and changes in the 
perfusion coefficient w according to equation (3). Consequently, this affects blood 
velocity in the capillary ub , a parameter that integrates models of bioheat transfer 
and oxygen distribution (Eq. (4)).  

The two main findings of the current work refer to the oxygen distribution model: 
– the clustering of mitochondria effectively delays the onset of hypoxia (Fig. 5), 
– by including the effect of myoglobin in equation (6), hypoxia, resulting from 

a low blood velocity, occurs with a delay (Fig. 6). 
Since oxygen consumption occurs primarily in mitochondria, clustering leads to 

a higher oxygen demand in areas with densely arranged mitochondria and lower 
demand where they are sparse [16]. Clusters of mitochondria are represented in the 
model as increased oxygen demand according to the authors’ new function presented 
in Section 4. Previously, rather step functions were used [3, 16]. 

The major effect of myoglobin is observed after 22 s (Fig. 6), indicating that 
this protein only releases stored oxygen when there is an oxygen deficiency in  
the tissue. From the results presented, it can be concluded that incorporation of  
myoglobin-facilitated diffusion has relatively little effect on overall oxygen transport. 
These results are consistent with studies by Jurgens et al. [19] suggest that myoglo-
bin is of minimal importance in oxygen transport under physiological conditions. 
Roy and Popel also reached similar conclusions [20]. 
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