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Abstract. The Lie symmetry analysis method (LSAM) is applied to obtain all Lie symme-
tries of the nonlinear time-fractional Sharma-Tasso-Olever equation. The studied fractional
partial differential equation (FPDEs) is reduced to some fractional ordinary differential
equations (FODEs), of which some exact solutions including the convergent power series
solution are obtained. The dynamic behaviors of these exact solutions are presented graph-
ically. In addition, the conservation laws for the obtained symmetries are constructed by
Ibragimov’s theory.
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1. Introduction

Nonlinear partial differential equations (NLPDEs) are an important tool in the
nonlinear modelling of phenomena of the nature. Finding solutions to NLPDEs
can help people gain a deeper understanding of the phenomena behind the models.
There are some recent works about the NLPDEs and various methods to solve them
[1-4]. Among NLPDEs, the following nonlinear Sharma-Tasso-Olever equation is
considered [5, 6]:

∂u
∂ t

+3au2
x +3au2ux +3auuxx +auxxx = 0, (1)

which elucidates the dynamics of waves exhibiting infinitesimal amplitudes propa-
gating within a nonlinear dispersive medium and is used in many fields of physics,
including relativistic physics, quantum field theory, fusion processes for solitons
and fission, quantum relativistic atom theory and nonlinear optics, etc. [7]. Recently,
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the fractional version of the classical Sharma-Tasso-Olever equation has received
great attention and has been studied by different scholars using different methods
(see [8-13] and the references therein).

In this paper, we use the LSAM to study the following nonlinear time-fractional
Sharma-Tasso-Olever equation:

Dα
t u(t,x)+3au2

x +3au2ux +3auuxx +auxxx = 0, 0 < t, 0 < α ⩽ 1. (2)

There are many types of definitions for fractional derivative, such as the Riemann-
-Liouville type, Caputo type, Weyl type, and so on. This paper adopts the most widely
used Riemann-Liouville fractional derivative Dα

t defined by [14]

0Dα
t f (t,x) = Dn

t 0In−α
t f (t,x) =


1

Γ(n−α)

∂ n

∂ tn

∫ t

0

f (s,x)
(t − s)α−n+1 ds, n−1 < α < n

Dn
t f (t,x), α = n ∈ N

with the Gamma function Γ(z) =
∫

∞

a
e−ztz−1dt. We denote the operator 0Dα

t as Dα
t

for simplicity throughout this paper.
Fractional differential equations (FDEs), due to the nonlocality of fractional deriva-

tive, exhibit genetic effects and long-range dependence, and are widely used in many
fields of mathematics, physics, engineering, etc. Therefore, solving FDEs is of great
significance. At present, there are only some specialized numerical and analytical
solutions available, such as the Adomian decomposition method [15], finite differ-
ence method [16], homotopy perturbation method [17], the sub-equation method
[18], the variational iteration method [19], invariant subspace method [20], Lie
symmetry analysis method [21], and so on. Among them, the LSAM has received
increasing attention because it can treat differential equations uniformly regardless
of their forms, transforming some solutions of these equations into other forms of
solutions [22]. It was introduced to solve FDEs by Gazizov et al. [21] in 2007,
and recently used to analyze many important FDEs (see [23-33]).

This paper mainly utilizes the LSAM to find all Lie symmetries for Eq. (2) and
uses them to reduce Eq. (2) and gets its exact solutions. For power series solutions,
we proved their convergence and showed the dynamic analysis of their truncated
graphs. Moreover, we constructed the conserved vector for each symmetry by
Ibragimov’s theory [34, 35].

2. Lie symmetries of Eq. (2)

Assume the nonlinear time-fractional Sharma-Tasso-Olever equation (2) is invari-
ant under the continuous single-parameter transformation group below:
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t∗ = t + ετ(t,x,u)+o(ε), x∗ = x+ εξ (t,x,u)+o(ε),

u∗ = u+ εη(t,x,u)+o(ε), Dα
t∗u

∗ = Dα
t u+ εη

α,t +o(ε),

Dx∗u∗ = Dxu+ εη
x +o(ε), D2

x∗u
∗ = D2

xu+ εη
xx +o(ε),

D3
x∗u

∗ = D3
xu+ εη

xxx +o(ε),

(3)

where τ , ξ , η are infinitesimals, and η
α,t , η

x, η
xx, η

xxx are the corresponding prolon-
gations of η . So the transformation group (3) admits the following group generator:

X = τ(t,x,u)
∂

∂ t
+ξ (t,x,u)

∂

∂x
+η(t,x,u)

∂

∂u
, (4)

and its corresponding prolongation:

prX = X +η
α,t ∂

∂uα
t
+η

x ∂

∂ux
+η

xx ∂

∂uxx
+η

xxx ∂

∂uxxx
+ · · · , (5)

where

η
x = Dx(η)−utDx(τ)−uxDx(ξ ), (6)

η
xx = Dx(η

x)−uxtDx(τ)−uxxDx(ξ ), (7)

η
xxx = Dx(η

xx)−uxxtDx(τ)−uxxxDx(ξ ), (8)

and

η
α,t =

∂ αη

∂ tα
+(ηu −αDt(τ))

∂ αu
∂ tα

−u
∂ αηu

∂ tα
−

∞

∑
n=1

(
α

n

)
Dn

t (ξ )D
α−n
t (ux)

+
∞

∑
n=1

[(
α

n

)
∂ nηu

∂ tn −
(

α

n+1

)
Dn+1

t (τ)
]
Dα−n

t (u)+µ,

(9)

with

µ =
∞

∑
n=2

n

∑
m=2

m

∑
k=2

k−1

∑
r=0

(
α

n

)(
n
m

)(
k
r

)
tn−α(−u)r

k!Γ(n+1−α)

∂ muk−r

∂ tm
∂ n−m+kη

∂ tn−m∂uk .

Remark 1 From the definition of the Riemann-Liouville fractional derivative, the
invariance determined by (3) requires that t = 0 should be invariant, i.e.,

τ(t,x,u)|t=0 = 0. (10)

Remark 2 Based on the expression of µ , it vanishes under the following condition:

∂ 2η

∂u2 = 0. (11)

The assumption that the infinitesimal transformations (3) are admitted by Eq. (2)
holds, provided that it satisfies the following invariance criterion:
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prX
(
Dα

t u(t,x)+3au2
x +3au2ux +3auuxx +auxxx

)
|(2) = 0, (12)

which is rewritten as(
η

α,t +aη
xxx +3auη

xx +(6aux +3au2)ηx +(6auux +3auxx)η
)
|(2) = 0. (13)

Putting η
α,t , η

x, η
xx and η

xxx into (13) and equating the coefficients of various
derivatives of u arrives the following results:

τ = c1t, ξ =
α

3
c1x+ c2, η =−α

3
c1u, (14)

where c1 and c2 are arbitrary constants. So we can get the following group generators:

X1 =
∂

∂x
, X2 = t

∂

∂ t
+

α

3
x

∂

∂x
− α

3
u

∂

∂u
. (15)

3. Exact solutions of Eq. (2)

In this section, we perform similarity reductions and obtain exact solutions for
Eq. (2) through the obtained group generators (15).

Case 1 X1

For X1, the characteristic equation is

dt
0
=

dx
1

=
du
0
, (16)

of which the similarity variables are t and u. So the form of the invariant solution of
Eq. (2) is

u(t,x) = f (t). (17)

Substituting (17) into Eq. (2) yields

Dα
t f = 0. (18)

So we can easily obtain the following trivial solution of Eq. (2):

u(t,x) = f (t) =
C1

Γ(α)
tα−1. (19)

where C1 is determined by the initial condition, that is, C1 = D−(1−α)
t f (0). Figure 1

shows the dynamic behavior of the trivial solution (19), which demonstrates the
asymptotic stability of (19) for some different values of fractional order α .
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Fig. 1. Graphs of the solution (19) with C1 = 0.1

Case 2 X2

For X2, the characteristic equation is

dt
t
=

dx
α

3 x
=

du
−α

3 u
, (20)

of which the similarity variables are xt−
α

3 and ut
α

3 . So we obtain the following
invariant solutions:

u(t,x) = t−
α

3 f (ω), ω = xt−
α

3 . (21)

Theorem 1 The similarity transformation u(t,x) = t−
α

3 f (ω) with ω = xt−
α

3

reduces Eq. (2) to the following FODE:

(P
1− 4α

3 ,α
3
α

f )(ω)+3a( f ′)2 +3a f 2 f ′+3a f f ′′+a f (3) = 0, (22)

of which the Erdélyi-Kober fractional derivative operator is defined as

(P ι ,κ
δ

ψ)(ω) :=
m−1

∏
j=0

(ι + j− 1
δ

ω
d

dω
)(K ι+κ,m−κ

δ
ψ)(ω), m =

{
[κ]+1, κ /∈ N,
κ, κ ∈ N,

with

(K ι ,κ
δ

ψ)(ω) :=


1

Γ(κ)

∫
∞

1
(s−1)κ−1s−(ι+κ)

ψ(ωs
1
δ )ds, κ > 0,

ψ(ω), κ = 0.
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Proof From (21), we can obtain

∂ αu
∂ tα

=
∂ α

∂ tα
(t−

α

3 f (ω)) =
∂

∂ t

[ 1
Γ(1−α)

∫ t

0
(t − s)−αs−

α

3 f (xs−
α

3 )ds
]
.

Let r =
t
s
, and we have

∂ αu
∂ tα

=
∂

∂ t

[ t1− 4α

3

Γ(1−α)

∫
∞

1
(r−1)−αr

4α

3 −2 f (ωr
α

3 )dr
]
=

∂

∂ t

[
t1− 4α

3 (K
1− α

3 ,1−α

3
α

f )(ω)
]
.

Due to the following relation:

t
∂

∂ t
ψ(ω) = tx(−α

3
)t−

α

3 −1 d
dω

ψ(ω) =−α

3
ω

d
dω

ψ(ω).

we get

∂ αu
∂ tα

= t−
4α

3

[
(1− 4α

3
− α

3
ω

d
dω

)(K
1− α

3 ,1−α

3
α

f )(ω)
]
= t−

4α

3 (P
1− 4α

3 ,α
3
α

f )(ω).

In addition,

3au2
x +3au2ux +3auuxx +auxxx = t−

4α

3
(
3a( f ′)2 +3a f 2 f ′+3a f f ′′+a f (3)

)
.

This completes the proof. □
Next, we can obtain the power series solutions for (22) by using the power series

method. Assuming

f (ω) =
∞

∑
k=0

akω
k, (23)

we get

f ′(ω) =
∞

∑
k=0

(k+1)ak+1ω
k,

f ′′(ω) =
∞

∑
k=0

(k+2)(k+1)ak+2ω
k,

f ′′′(ω) =
∞

∑
k=0

(k+3)(k+2)(k+1)ak+3ω
k,

(24)
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and

(P
1− 4α

3 ,α
3
α

f )(ω) = (1+
(2n−m)α

m−2n+1
− (m−n)α

m−2n+1
ω

d
dω

)(K
1− α

3 ,1−α

3
α

f )(ω)

= (1− 4α

3
− α

3
ω

d
dω

)(
1

Γ(1−α)

∫
∞

1
(s−1)−αs

4α

3 −2
∞

∑
k=0

akω
ks

kα

3 ds)

= (1− 4α

3
− α

3
ω

d
dω

)(
∞

∑
k=0

akω
k 1
Γ(1−α)

∫
∞

1
(s−1)−αs

k+4
3 α−2ds)

= (1− 4α

3
− α

3
ω

d
dω

)(
∞

∑
k=0

Γ(1− k+1
3 α)

Γ(2− k+4
3 α)

akω
k) =

∞

∑
k=0

Γ(1− k+1
3 α)

Γ(1− k+4
3 α)

akω
k.

(25)

Substituting (23)-(25) into (22), we obtain the following equations:

Γ(1− k+1
3 α)

Γ(1− k+4
3 α)

ak +3a ∑
i+ j=k

(i+1)( j+1)ai+1a j+1 +3a ∑
i+ j+m=k

(m+1)aia jam+1

+3a ∑
i+ j=k

( j+2)( j+1)aia j+2 +a(k+3)(k+2)(k+1)ak+3 = 0.

(26)

So we get the following explicit expressions:

ak+3 =
−1

(k+3)(k+2)(k+1)

[ Γ(1− k+1
3 α)

aΓ(1− k+4
3 α)

ak +3 ∑
i+ j=k

(i+1)( j+1)ai+1a j+1

+3 ∑
i+ j+m=k

(m+1)aia jam+1 +3 ∑
i+ j=k

( j+2)( j+1)aia j+2

]
, k ⩾ 0,

(27)

with a0 = f (0), a1 = f ′(0), a2 = f ′′(0).
Therefore, we obtain the power series solution as follows:

u(t,x) = a0t−
α

3 +a1xt−
2α

3 +a2x2t−α +
∞

∑
k=0

−xk+3t−
(k+4)α

3

(k+3)(k+2)(k+1)

×
[ Γ(1− k+1

3 α)

aΓ(1− k+4
3 α)

ak +3 ∑
i+ j=k

(i+1)( j+1)ai+1a j+1

+3 ∑
i+ j+m=k

(m+1)aia jam+1 +3 ∑
i+ j=k

( j+2)( j+1)aia j+2

]
.

(28)
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Theorem 2 For a neighborhood of (0, |a0|), (28) is convergent.

Proof From Eq. (27), we can obtain

|ak+3| ≤
1

(k+3)(k+2)(k+1)

[ |Γ(1− k+1
3 α)|

|aΓ(1− k+4
3 α)|

|ak|+3 ∑
i+ j=k

(i+1)( j+1)|ai+1||a j+1|

+3 ∑
i+ j+m=k

(m+1)|ai||a j||am+1|+3 ∑
i+ j=k

( j+2)( j+1)|ai||a j+2|
]
.

(29)

From the Gamma function, the property
|Γ(1− k+1

3 α)|
|Γ(1− k+4

3 α)|
≤ 1 holds for arbitrary k.

So (29) is written as

|ak+3| ≤ M
(
|ak|+ ∑

i+ j=k
|ai+1||a j+1|+ ∑

i+ j+m=k
|ai||a j||am+1|+ ∑

i+ j=k
|ai||a j+2|

)
, (30)

where M = max{ 1
|a|(k+3)(k+2)(k+1)

,
3(k+1)

(k+3)(k+2)
,

3
(k+3)(k+2)

,
3

(k+3)
}.

Another power series is defined as

B(ω) =
∞

∑
k=0

bkω
k, (31)

where b0 = |a0|, b1 = |a1|, b2 = |a2| and

bk+3 = M(bk + ∑
i+ j=k

bi+1b j+1 + ∑
i+ j+m=k

bib jbm+1 + ∑
i+ j=k

bib j+2), k ≥ 0. (32)

Therefore, |ak| ≤ bk for k = 0,1,2, . . ., i.e., (31) is the majorant series of (23). From
(31) and (32), we have

B(ω) = b0 +b1ω +b2ω
2 +M

(
B(ω)ω3 +(B(ω)−b0)

2
ω

+B2(ω)(B(ω)−b0)ω
2 +B(ω)(B(ω)−b0 −b1ω)ω

)
.

(33)

What follows is an implicit function with respect to ω:

Ψ(ω,B) = B−b0 −b1ω −b2ω
2 −M

(
Bω

3 +(B−b0)
2

+B2(B−b0)ω
2 +B(B−b0 −b1ω)ω

)
.

(34)

It is analytic in a neighborhood of (0,b0), and Ψ(0,b0) = 0,
∂

∂B
Ψ(0,b0) = 1.

Therefore, the power series (31) is analytic in this domain based on implicit function
theorem. That is, in a neighborhood of the point (0, |a0|), the power series solution
(28) is convergent. □
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From (27), we obtain some values of an for the given α , which are listed in
Table 1. While the dynamical profiles of the power series solution (28) are plotted
in Figure 2, which illustrates that for the given initial values a0 = a1 = a2 = 1,
it varies continuously with fractional order α .

Table 1. The first six coefficients of (28) for different fractional orders

a0 a1 a2 a3 a4 a5
α = 0.15 1 1 1 –2.147658906 0.3244086246 0.7518150253
α = 0.30 1 1 1 –2.119598248 0.3123300909 0.7425473856
α = 0.45 1 1 1 –2.083589098 0.2977741570 0.7311960493
α = 0.60 1 1 1 –2.042266367 0.2816997754 0.7190307747
α = 0.75 1 1 1 –2.000000001 0.2650667621 0.7080060378
α = 0.90 1 1 1 –1.962835074 0.2481984410 0.7008376236

(a) α=0.15 (b) α=0.30 (c) α=0.45

(d) α=0.60 (e) α=0.75 (f) α=0.90

Fig. 2. Dynamical profiles of the truncated power series solution (28)

4. Conservation laws of Eq. (2)

In this section, for each Lie symmetry (15), we will construct its conservation
laws by means of Ibragimov’s theory [34, 35].
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Firstly, we denote equation (2) as

F = Dα
t u(t,x)+3au2

x +3au2ux +3auuxx +auxxx = 0, (35)

and its formal Lagrangian is

L = v(t,x)F = v(t,x)
(
Dα

t u(t,x)+3au2
x +3au2ux +3auuxx +auxxx

)
, (36)

where v(t,x) is an undetermined function. The Euler-Lagrange operator is

δ

δu
=

∂

∂u
+(Dα

t )
∗ ∂

∂ (Dα
t u)

+
∞

∑
s=1

(−1)sDi1 · · ·Dis
∂

∂ui1···is
, (37)

where (Dα
t )

∗ is the adjoint operator of Dα
t and is defined by the right Caputo fractional

derivative [25], i.e.,

(Dα
t )

∗ f (t,x) =


1

Γ(n−α)

∫ T

t

1
(t − s)α−n+1

∂ n

∂ sn f (s,x)ds, n−1 < α < n,

Dn
t f (t,x), α = n ∈ N.

So the adjoint equation of (35) is

F∗ =
δL

δu
= (Dα

t )
∗v−avxxx +3auvxx −6auvux −3au2vx = 0. (38)

Then we apply Ibragimov’s method with the above adjoint equation to construct
conservation laws for symmetries (15). From the following fundamental operator
identity:

prX +Dtτ ·I +Dxξ ·I =W · δ

δu
+DtN

t +DxN
x, (39)

where I is the identity operator, and W = η − τut − ξ ux is the characteristic of
generator X , we obtain the generalized Noether operators as follows:

N t = τI +
n−1

∑
k=0

(−1)kDα−1−k
t (W )Dk

t
∂

∂ (Dα
t u)

−(−1)nJ(W,Dn
t

∂

∂ (Dα
t u)

), n= [α]+1,

(40)

N x = ξI +W
( ∂

∂ux
−Dx

∂

∂uxx
+D2

x
∂

∂uxxx

)
+DxW

( ∂

∂uxx
−Dx

∂

∂uxxx

)
+D2

xW
∂

∂uxxx
,

(41)
where J is defined by

J( f ,g) =
1

Γ(n−α)

∫ t

0

∫ T

t

f (τ,x)g(θ ,x)
(θ − τ)α+1−n dθdτ. (42)

We call C = (Ct ,Cx) a conserved vector of Eq. (2) if it satisfies conservation equation
[DtCt +DxCx](2) = 0, and we can obtain its components from the new conservation
theorem [35] as follows:
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Ct = N tL , Cx = N xL . (43)

Case 3 X1 =
∂

∂x

The characteristic of X1 is

W =−ux, (44)

and the components of the corresponding conserved vector are

Ct = vDα−1
t (W )+ J(W,vt) =−vDα−1

t ux − J(ux,vt), (45)

Cx =−ux(avxx +3avux −3auvx +3au2v)−uxx(3auv−avx)−avuxxx. (46)

Case 4 X2 = t
∂

∂ t
+

α

3
x

∂

∂x
− α

3
u

∂

∂u

The characteristic of X2 is

W =−α

3
u− tut −

α

3
xux, (47)

and the components of the corresponding conserved vector are

Ct =−vDα−1
t

(
α

3
u+ tut +

α

3
xux

)
− J(

α

3
u+ tut +

α

3
xux,vt), (48)

Cx =− (
α

3
u+ tut +

α

3
xux)(avxx +3avux −3auvx +3au2v)

− (
2α

3
ux + tuxt +

α

3
xuxx)(3auv−avx)−av(αuxx + tuxxt +

α

3
xuxxx).

(49)

5. Conclusions

This paper shows that the LSAM is effective in solving nonlinear FPDEs.
We obtained all the Lie symmetries of the nonlinear time-fractional Sharma-Tasso-
-Olever equation and used them to reduce the equation, thereby getting one asymp-
totic stable solution and one convergent power series solution. Inspired by this, our
next step is to apply the LSAM to high-dimensional nonlinear FPDEs and stochastic
FPDEs with the Riemann-Liouville fractional derivative. However, the LSAM
has not yet been applied to other newly defined fractional derivatives, such as the
tempered fractional derivative, which is also a topic worthy of our future research.
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