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Abstract. The boundary value problem consisting of homogeneous second-order ordinary 

differential equation and the classical and/or fractional boundary conditions is considered. 

Such an equation can describe the motion of the harmonic oscillator in the one-dimensional 

cylindrical coordinate. The general solution of this equation includes the Bessel functions 

of the first and second kinds. The particular solutions of the equation are determined on the 

basis of various constructions of boundary conditions that, in particular, take into account 

the left- and right-side fractional derivatives defined in the Riemann-Liouville sense. Also, 

three illustrative examples of particular solutions on the plots are shown. 
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1. Introduction  

The ordinary differential equations of the second order [1, 2] are often used to 

model various physical phenomena. These phenomena include vibrations of harmon-

ic oscillator [3], modeling of stationary heat transfer problems [4, 5], steady-state 

fluid flow [6], solutions of different Sturm-Liouville problems [7-9], or in electro-

statics problems [10]. These equations are often solved as boundary and/or initial 

value problems. In this work, the focus is only on the boundary value problem.  

The classical boundary conditions are typically defined as the Dirichlet, Neumann 

and Robin conditions. With the development of fractional calculus [11, 12], it has 

became possible to define fractional boundary conditions. The definitions of various 

fractional derivatives are usually more complex than classical ones, and therefore  

it is more difficult to obtain exact solutions hence, in such a situation, it is worth 

considering the use of numerical methods [13, 14]. In my previous paper [15],  
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the fourth-order differential equation with fractional initial-boundary conditions 

was considered. 

In this work, the equation of the harmonic oscillator in 1D axisymmetric cylin-

drical coordinates is considered. The solution of the equation consists of the sum of 

the Bessel functions of the first and second kind. Various variants of the classical- 

-fractional boundary conditions are considered. The analysis of example solutions 

involves examining the influence of the values of the fractional derivative order on 

the solution. A comparison of the solutions obtained for fractional boundary condi-

tions with classical boundary conditions of the Robin type was also analyzed.  

2. Problem and its solution 

The second-order differential equation with constant coefficient a in the follow-

ing form 
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is considered. The general solution of Eq. (1) for a > 0 is of the form (i.e. [16]) 
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where J and Y are the Bessel functions of the first and second kind, defined as 
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and C1 and C2 are two independent integration constants. 

In order to obtain the particular solutions of Eq. (1), the coefficients C1 and C2 

in Eq. (2) must be determined on the basis of boundary conditions given in the end 

points x1 and x2 , where 1 20 x x  . 

In this paper, Eq. (1) with the following boundary conditions is considered 
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where 1 2, (0,1),    the operator D denotes the first-order derivative and the oper- 

ators 1

2

,
x

D 

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1x
D 


 are the left- and right-side Riemann-Liouville derivatives defined  

as [11, 12] 
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The values of the left- and right-side fractional derivatives of function y(x)  

(see Eq. (2)) calculated on the endpoints of interval [x1, x2] are equal to 
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The left- and right-sided Riemann-Liouville fractional derivatives for 0   of 

the above Bessel functions can be calculated using the transformations based on the 

definitions of the Caputo fractional derivatives. For the left-side Riemann-Liouville 

fractional derivatives, one obtains 
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while the right-side Riemann-Liouville derivatives of J0 and Y0 are as follows 
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3. Illustrative examples 

This section outlines the methods for constructing specific solutions to the  

differential equation in question. The general form of the boundary conditions,  

as defined in Eq. (5), is examined in detail for three distinct combinations, each  

applied to the domain [x1,x2], on both sides. 

 

Example 1 In this example, the following fractional boundary conditions in the 

following forms are taken into account 
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After substitution of the general solution (2) into Eqs. (14), the following system 

of linear equations is obtained 
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that can be written in the matrix form as 

  A C B  (16) 

where  
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from which the constants C1 and C2 are determined. 

Figure 1 shows the plots of example particular solutions (2) with the above-

mentioned boundary conditions. 

 

 

Fig. 1. The solutions of Eq. (1) for x1 = 0.2, x2 = 5, a = 10 and boundary conditions 

 0.6

5 0.2
0.5,

x
D y x


   2

0.2 5
1.3

x
D y x




 for  2 0.5,0.6,0.7,0.8,0.9  

Example 2 Here, two cases of the following boundary conditions are considered 
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and 
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In a similar manner as in the first example, the systems of equations are created, 

where the matrices A take the forms 
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respectively. The matrices B are the same. 

In Figures 2 and 3, the plots of particular solutions (2) with the above sets of 

boundary conditions are presented. 

 

 

Fig. 2. The solutions of Eq. (1) for x1 = 0.1, x2 = 2, a = 14 and boundary conditions 
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Fig. 3. The solutions of Eq. (1) for x1 = 0.1, x2 = 2, a = 14 and boundary conditions 

 0.1 5,y       2 21 0.1 0.1 1y Dy     for  2 0.001,0.25,0.5,0.75,0.9  

The calculations and plots are created in the Maple software. 

4. Conclusions 

Solutions of the considered second-order differential equation with fractional 

boundary conditions seem to be an interesting alternative to solutions with classical 

boundary conditions. The use of the fractional-order derivatives in boundary condi- 

tions gives wider possibilities of applying these solutions, among others, in problems 

of fractional mechanics. Based on the results presented in the second example,  

it can be seen that the solutions with fractional boundary conditions are similar 

(though different) to those with the classical Robin condition. The paper has been 

presented the construction of three different variants of boundary conditions given 

at both endpoints of the considered interval. Based on the described constructions, 

one can create, in an analogous way, other forms of boundary conditions described 

by any linear functional dependencies taking into account both the value of function, 

its first derivative and/or fractional derivatives. 

Future plans include conducting research on the feasibility of applying the pro-

posed boundary conditions to a broader range of linear differential equations,  

specifically those of the second or higher order. One also expects wide possibilities 

of using the fractional derivatives in the constructions of boundary conditions to 

solve systems of linear differential equations. 
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