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Abstract. We consider Young measures associated with elements of sequences of m-oscil-
lating functions. Such Young measures are homogeneous and absolutely continuous with
respect to the Lebesgue measure. The total slope of an m-oscillating function is defined,
and the basic property of a set of Young measures associated with m-oscillating functions is
stated. Next, the relation between weak L1 convergence of densities and weak convergence,
with respect to the total variation norm, of respective Young measures is investigated.
The last result unifies and generalizes most examples of Young measures usually presented
in the literature.
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1. Introduction

The hidden roots of the concept of a Young measure are in P.G.L. Dirichlet’s
conviction (shared by many prominent scholars) that bounded from below integral
functional attains its infimum. The counterexample provided by Weierstrass in 1870
proved this conviction wrong. The examples presented by O. Bolza and L.C. Young,
this time in the ’proper’ context of calculus of variations, revealed the nature of
’generalized curves’, or ’generalized surfaces’ in the multidimensional case, (Young’s
terminology) of Young measures. Namely, they are weak (or weak∗) limits of
sequences of rapidly oscillating functions. This follows from the fact that, in general,
weak L1 limits of sequences of bounded functions lie in the second conjugate of L1.
The latter can be identified with the conjugate of L∞, which is strictly larger with
respect to inclusion than L1.

The first general existence result concerning Young measures, based on the fact
that the space of measures is a dual of a relevant function space is presented in [1],
the reader may also check [2], where the author investigates Young measures also as
disintegrations of respective product measures. An even more general existence result
for Young measures together with some advanced applications in engineering can be
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found in [3]. Detailed treatment of Young measures from various points of view,
but concentrated on the mathematical aspects of Young measures are in [4]. The third
chapter of [5] is devoted entirely to Young measures and provides a general existence
theorem proved in detail.

Young measures appear in the mathematical analysis of certain engineering prob-
lems, for example, in the investigation of the infima of the energy functionals of
certain shape-memory alloys, like Cu-Al-Ni or Ni-Al, see, for example, paragraph
1.8 in [6], and also [7]. Since the infima of the energy functionals in this case are not
attained, the respective minimizing sequences are rapidly oscillating. These oscilla-
tions reveal a phenomenon called a microstructure, which can be observed through
a microscope. Young measures can be used to analyze the information contained in
the microstructure, but obtaining an explicit form of a Young measure in a particu-
lar case is difficult. Fortunately, it turns out that probabilistic methods, in particular
Monte Carlo simulations, can be of help, see, for example, [8-10], see also [11, 12].

Among other areas in which Young measures play an important role, one can
mention nonlinear elasticity and fluid dynamics. An interested reader may check for
example [13-15] and the references cited there.

In this article, like in [16], we look at a Young measure as a value of a weakly∗-
measurable mapping defined on a domain of definition of considered functions.
We fix our attention on Young measures associated with bounded functions that
are piecewise diffeomorphic. Young measures associated with such functions are
homogeneous and absolutely continuous with respect to the Lebesgue measure.
We use the fact that for any bounded, Borel, Rl-valued function there exists a Young
measure associated with it. This approach makes calculating generalized limits of
sequences of rapidly oscillating functions in many practically significant cases
easier.

The structure of the article is as follows: in the first part of the next section,
we recall facts concerning Young measures together with necessary notions from
functional analysis that are used in the article. In the second part, we recall the form of
Young measures associated respectively with simple functions and with m-oscillating
functions. Then we generalize these results, showing and illustrating this with
an example that the Young measure associated with a function being a sum of those
types of functions is a mixed probability distribution. The third part of the article con-
tains the definition of a total slope of an m-oscillating function and the statement of
the compactness property of a set of Young measures associated with m-oscillating
functions. The last section contains the main result of the article. We prove a theorem
that unifies and generalizes most of the examples of Young measures generated
by sequences of piecewise smoothly invertible functions, which are usually presented
in the literature. Finally, the Conclusions section closes the main body of the article.
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2. Some necessary facts about Young measures

We briefly recall basic facts and set the notation. The reader is referred to the
details in [16] and the references cited there.

2.1. Basic definitions and facts

The letter Ω will denote an open subset of Rd such that µ(Ω) = M > 0, where µ

is the Lebesgue measure on Ω , the letter K will denote a nonempty compact subset
of Rl , dy will denote the Lebesgue measure on K, and U will stand for the set of all
Borel measurable functions on Ω with values in K (if u ∈ U , then u(x) ∈ K).

If Z is a Banach space and Z∗ – the space of all continuous linear functionals on Z
(shortly: the conjugate of Z), then a real valued mapping ⟨·, ·⟩ defined on Z∗×Z, that
is linear in each variable separately, is called a dual pair. We then say that a mapping
g : Ω → Z∗ is weakly∗-measurable, if for any z ∈ Z the function x 7→ ⟨g(x),z⟩ is
measurable.

If (zn) is a sequence in Z and ( fn) a sequence in Z∗, then we say that (zn) is
weakly convergent to z ∈ Z, if for all f ∈ Z∗ there holds lim

n→∞
f (zn) = f (z), while ( fn)

is weakly∗ convergent to f ∈ Z∗, if for all z ∈ Z there holds lim
n→∞

fn(z) = f (z).

The elements of a set rca1(K) are probability measures on the set K. They form
a subset of a set rca(K) – the set of regular, countably additive scalar measures
on K, which endowed with a total variation norm is a Banach space (if m ∈ rca(K),
its total variation norm |m|(K) = sup∑

i
|m(Ki)|, where the supremum is taken over

by all partitions of the set K).
A sequence (ρn) of bounded measures on a compact set K ⊂Rl converges weakly∗

to a measure ρ0, if ∀β ∈C(K,R), there holds

lim
n→∞

∫
K

β (k)dρn(k) =
∫
K

β (k)dρ0(k).

If ρ is a measure on K and for some function w : K →R integrable with respect to

the measure ξ there holds: for any Borel subset A of K we have ρ(A)=
∫

A
w(y)dξ (y),

then the function w is called a density of the measure ρ . In this case ρ is absolutely
continuous with respect to ξ (shortly: ξ -continuous): ξ (A) = 0 ⇒ ρ(A) = 0.

Consider mappings ν : Ω ∋ x → ν(x) ∈ rca(K) assigning to the points from the
domain of definition of u ∈ U the measures on the range of u. We want them to be
weakly∗ measurable and such that the essential supremum of the set

{
∥ν(x)∥rca(K) :

x ∈ Ω
}

is finite. Then ν is a weakly∗ measurable mapping if for any β ∈ C(K) the
function

x 7→
∫
K

β (k)(ν(x))(dk) = ⟨ν(x),β ⟩

is Borel measurable.
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The set of all weakly∗-measurable mappings from L∞
w∗(Ω , rca(K)), such that their

values belong to rca1(K), is called the set of Young measures. It is denoted by
Y (Ω ,K)

Y (Ω ,K) :=
{

ν = (ν(x)) ∈ L∞
w∗(Ω , rca(K)) : νx ∈ rca1(K) for a.a x ∈ Ω

}
.

We will write νx or (νx)x∈Ω instead of ν(x).
One of the corollaries of the basic Theorem 3.6 in [5] (see also Theorem 2 in [16])

states that with any u ∈ U we can associate a Young measure ν
u ∈ Y (Ω ,K). If the

Young measure (νu
x )x∈Ω does not depend on the parameter x ∈ Ω , it is called ho-

mogeneous. More precisely, according to the Convention 3.1, the Theorem 3.6 in [5]
and the Theorem 3.1 in [17], we will use the following definition of the homogeneous
Young measure.

Definition 1 (i) We say that a mapping ν ∈ Y (Ω ,K) is a homogeneous Young
measure if it is constant on Ω ;

(ii) let ν
u be a Young measure associated with a Borel function u : Ω → K. We say

that ν
u ∈Y (Ω ,K) is a homogeneous Young measure if it is constant on Ω and

is an image of the measure 1
M dµ under u, i.e. ν

u = 1
M dµ ◦u−1. 2

2.2. Young measures associated with particular classes of functions

We divide the set Ω into n subsets Ω1,Ω2, . . . ,Ωn, forming an open partition of
this set. We assume that the Lebesgue measure of the set Ωi is positive and is equal

to mi, i ∈ I := {1,2, . . . ,n}. Then, obviously,
n

∑
i=1

mi = M.

If a function u : Ω → K is piecewise constant and takes value pi on the set Ωi,
i= 1,2, . . . ,n, then a Young measure ν

u associated with this function is homogeneous
and is of the form

ν
u = 1

M

n

∑
i=1

miδpi . (1)

Let us now consider functions ui : Ωi → K ⊂ Rd with inverses u−1
i that are conti-

nuously differentiable on u(Ωi) and let Ki := ui(Ωi) be compact. We denote the
Jacobian of u−1

i by Ju−1
i

. Denoting by 1A the characteristic function of a set A, let us
call a function u an m-oscillating function if it is of the form

u(x) = ∑
i

ui(x)1Ωi(x). (2)

The letter ’m’ in the above definition refers to the fact that in the one dimen-
sional case the functions ui and u−1

i are strictly monotonic ones. A Young measure
ν

u associated with an m-oscillating function is a homogeneous Young measure that
is absolutely continuous with respect to the Lebesgue measure dy on the set K.
Its density g is given by the formula
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g(y) =
1
M ∑

{i:y∈Ki}
|Ju−1

i
(y)|. (3)

Using the facts that a finite sum of measurable maps is measurable and that the
absolutely continuous measure of a countable set is zero, we can ’unify’ the above
two cases as follows. Let the sets I1, I2 form a partition of the set I of indices. Let the
function u : Rd ⊃ Ω → K ⊂ Rd be of the form u = uc +dd , where

• uc is piecewise constant on a set
⋃
i∈I1

Ωi and takes respectively the value pi on

the set Ωi, i ∈ I1;

• ud is piecewise invertible on a set
⋃
i∈I2

Ωi, such that the inverse of a function ud
i

is continuously differentiable on a set Ki := ud
i (Ωi), i ∈ I2.

Then the Young measure ν
u associated with u is homogeneous and it is a mixed

probability distribution of the form

ν
u =

1
M

(
∑

{i : y∈Ki\pi}
|J
(ud

i )
−1(y)|dy+ ∑

i∈I1

miδpi

)
.

Taking now the function u as a function generating a sequence of oscillating func-
tions, we obtain a sequence (un). To each element of un there is associated the same
Young measure of the same form as above.

Consider, for a one dimensional illustration of the above, a function u given by
the formula

u(x) :=
√

x ·1(0,9)(x)+1[9,12)∪[19,24)(x)+

+(x−12) ·1[12,14)(x)+4 ·1[14,17)(x)+3 ·1[17,19)(x)+(1
3 x−8) ·1[24,30)(x).

Here, we have Ω = (0,30) and K = [0,3]∪{4} and

ν
u =

1
30

·



(2y+4)dy for y ∈ [0,2]\{1}
8δ1 for y = 1
2ydy for y ∈ (2,3)
2δ3 for y = 3
3δ4 for y = 4

.

In particular, we have

ν
u(K) =

1
30

( 2∫
0

(2y+4)dy+
3∫

2

2ydy+8+2+3
)
= 1,

which shows that ν
u is a probability measure on K.
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3. Total slope of an m-oscillating function

The equation (3) shows that the density of an m-oscillating function u depends
only (apart from the Lebesgue measure of Ω ) on the ’steepness’ of the graph of u.
This suggests introducing the following notion.

Definition 2 Let an m-oscillating function u be given by the equation (2). The total
slope Jtu of f is defined by

Jtu(y) := ∑
{i:y∈Ki}

|Ju−1
i
(y)|.

Example 1 Consider the following examples from Section 3.1.b in [5].

(i) a sequence (un) of m-oscillating nonperiodic functions, where for each n ∈ N
we have

un(x) :=


(
x(n+ k−1)− k+1

)n+k
n , x ∈

(
k−1

n+k−1 ,
k

n+k

)
, k ∈ N odd,(

k− x(n+ k)
)n+k−1

n , x ∈
[

k−1
n+k−1 ,

k
n+k

)
, k ∈ N even.

Then, the sequence (Jtun) of the respective total slopes is constant with each
element equal to 1. This means that the Young measure associated with
each un (and therefore the Young measure generated by the sequence (un))
is a homogeneous one, and it is absolutely continuous with respect to the
Lebesgue measure on [0,1] with a density that is equal to 1 a.e;

(ii) let un(t) = sin(2πnt), t ∈ (0,1), n ∈ N. Then

∀n ∈ N Jtun(y) =
1

π

√
1−y2

,

and thus the Young measure associated with each un is homogeneous and
absolutely continuous with respect to the Lebesgue measure. Its density is
equal to Jtun . 2

Recall that the subset of a normed space is relatively weakly compact if its closure in
a weak topology of this space is a compact set in this topology.

The next result follows from the two facts: the first is, that a Young measure
associated with an m-oscillating function is homogeneous and has a density (see the
equation (3)), while the second fact is a Theorem 1.64 in [4].

Theorem 1 Consider the set A of m-oscillating functions defined on a nonempty,
bounded open set Ω ⊂ Rd of a positive Lebesgue measure, having values in a com-
pact set K ⊂Rd . Then the set of the Young measures associated with the elements of
A is relatively weakly compact. 2
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4. Weak sequential convergence of functions and measures

We begin with recalling classical theorems concerning weak sequential conver-
gence of functions and measures that will be needed in the sequel. The expression
’weak convergence of the sequence of measures’ will be meant as the ’weak conver-
gence of the sequence of measures as elements of the Banach space rca(K)’ (with
the total variation norm). The term ’convergence’ is always understood as ’sequential
convergence’.

Let (X ,A ,ρ) be a measure space, and consider a sequence (un) of scalar functions
defined on X and integrable with respect to the measure ρ (that is, ∀n∈N un ∈ L1

ρ(X))
and a function u ∈ L1

ρ(X). Recall that (un) converges weakly to u if ∀g ∈ L∞
ρ (X) there

holds

lim
n→∞

∫
X

ungdρ =
∫
X

ugdρ.

The following theorem characterizes weak L1 convergence of functions and weak
convergence of measures. We refer the reader to [4, 18].

Theorem 2 (a) (J. Dieudonné, 1957) Let X be a locally compact Hausdorff space
and (X ,A ,ρ) – a measure space with ρ regular. A sequence (un) ⊂ L1

ρ(X)

converges weakly to some u ∈ L1
ρ(X) if and only if ∀A ∈ A the limit

lim
n→∞

∫
A

undρ

exists and is finite;

(b) let X be a locally compact Hausdorff space, and denote by B(X) the σ -algebra
of Borel subsets of X. A sequence (ρn) of scalar measures on B(X) converges
weakly to some scalar measure ρ on B(X) if and only if ∀A ∈ B(X) the limit

lim
n→∞

ρn(A)

exists and is finite;

(c) (Vitali-Hahn-Saks theorem)
let (X ,A ,µ) be a measure space with µ nonnegative finite, and let (ρn) be
a sequence of µ-continuous scalar measures on A . If for any A ∈ A the limit
lim
n→∞

ρn(A) exists, then the formula:

∀A ∈ A ρ(A) := lim
n→∞

ρn(A)

defines a µ-continuous scalar measure on A . 2
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Corollary 1 (a) Let (ρn) be a sequence of measures having respective densities
fn, n ∈ N. Then the sequence ( fn) is weakly convergent in L1(X) to some
function h if and only if the sequence (ρn) is weakly convergent to some
measure η;

(b) assume additionally, that X ⊂ Rl is compact, and let (ρn) be a sequence of
homogeneous Young measures having respective densities fn. Then the
sequence ( fn) is weakly convergent in L1(X) to some function h if and only
if the sequence (ρn) is weakly convergent to some measure η . 2

Lemma 1 Let (ρn) be a sequence of homogeneous Young measures on the set K,
having respective densities fn with respect to the Lebesgue measure dy on K. If the
sequence ( fn) is weakly convergent in L1(K) to certain function h, then the sequence
(ρn) is weakly convergent in rca(K) to a measure η . This measure is a homogeneous
Young measure with density h. 2

PROOF By the parts (a) and (b) of the Theorem 2 for any A ∈ B(K), the limit

lim
n→∞

ρn(A) = lim
n→∞

∫
A

fn(y)dy exists and is finite. This means that the sequence (ρn)

is weakly convergent to some measure η , which by the Vitali-Hahn-Saks theorem
has a density with respect to the Lebesgue measure on K. Denote this density with
the letter r. Choose and fix A ∈ B(K) and consider an inequality∣∣∣∫

A

r(y)dy−
∫
A

h(y)dy
∣∣∣≤ ∣∣∣∫

A

r(y)dy−η(A)
∣∣∣+ ∣∣η(A)−ρn(A)

∣∣+
+
∣∣∣ρn(A)−

∫
A

fn(y)dy
∣∣∣+ ∣∣∣∫

A

fn(y)dy−
∫
A

h(y)dy
∣∣∣.

The first and third terms on the right-hand-side of the above inequality vanish while
the second and fourth ones tend to zero as n → ∞. Thus h = r dy-almost everywhere
on K.

Now from the inequality∣∣∣1−∫
K

h(y)dy
∣∣∣≤ ∣∣∣1−∫

K

fn(y)dy
∣∣∣+ ∣∣∣∫

K

fn(y)dy−
∫
K

h(y)dy
∣∣∣

it follows that η is a probability measure on K. Since a weak limit (whenever it
exists) is unique, then a mapping Ω ∋ x → η ∈ rca(K) is constant, so it is weakly∗

measurable. Thus, η is a homogeneous Young measure on K and has the density h.■

Consider again the examples from Section 3.1.b in [5] of the sequences of
m-oscillating functions and the Young measures they generate. As it is already known,
the Young measures associated with each element of the particular sequence form
a constant, hence trivially (weakly) convergent, sequence. It follows from the fact
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that the sequence of the total slopes of these m-oscillating functions is constant. It is
a special case of a more general situation described in the next result.

Theorem 3 Consider a sequence (un) of m-oscillating functions. Assume further that
the sequence (Jtun) of respective total slopes is monotonic almost everywhere with
respect to the Lebesgue measure dy on K. Then the sequence (ρn) of Young measures
associated with the functions un is weakly convergent to the homogeneous Young
measure ρ . Moreover, the measure ρ has a density that is equal to the weak L1 limit
of the sequence of densities of the Young measures associated with the functions un.2

PROOF An element un of the sequence (un) is of the form

un =
l(n)

∑
i=1

un
i (x)1Ω n

i
(x),

where {Ω
n
1 , . . . ,Ω

n
l(n)} is an open partition of the set Ω determined by un. This means

in particular that the set Kn
i := un

i (Ω
n
i ) is compact and

l(n)⋃
i=1

Kn
i = K.

The total slope of this function is given by the formula

Jtun(y) = ∑
{i:y∈Kn

i }
|J(un

i )
−1(y)|

and thus the Young measure ρn associated with the function un, homogeneous and
absolutely continuous with respect to the Lebesgue measure dy on K, has a density
equal to 1

M Jtun .
We can assume that the sequence (Jtun) is nondecreasing. Then for any m, n ∈ N,

m ≤ n and any A ∈ B(K) there holds an inequality∫
A

Jtumdy ≤
∫
A

Jtundy

which means that for any fixed A ∈ B(K) the sequence
(∫

A

Jtundy
)

is convergent.

The result now follows from Theorem 2 and Lemma 1. ■

5. Conclusions

Homogeneous Young measures are first examples of Young measures. Although
they are the simplest in the whole set of Young measures associated with bounded
functions, they are important because they appear, for example, in optimization, when
searching the minimizers of the multiwell problems, see, for instance [7], [5] or [3]
and the references therein. The majority of the specific examples of Young measures
that can be found in the literature are homogeneous ones, see, for example, [6],
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examples 4.8, 4.9; [7], paragraphs 3.2, 3.3, 4.6, 6.2; [5] section 3.1.b; [4], example
3.44; [3], paragraphs 2.3, 4.5, 5.4.

Usually, calculating an explicit form of generalized limit of a function sequence,
which in our case is a measure-valued mapping, is difficult and requires advanced
methods of functional analysis. In [16] and this article, we propose a method that
generalizes and simplifies, at least to some extent, calculating those limits in some
particular cases that can be met in applications.

When dealing with sequence of fast oscillating functions, it often seems useful
not to consider the generalized limit of this sequence, but to consider the relevant
sequence of Young measures. The elements of this sequence are the Young measures
associated with the respective elements of the function sequence of interest. Having
this sequence obtained, one can investigate the existence and the form of the weak
(or weak∗) limits of this sequence of measures.

References

[1] Ball, J.M. (1989). A version of the fundamental theorem for Young measures. PDEs and
Continuum Models of Phase Transitions, Lecture Notes in Physics, (344), Springer, 207-215.

[2] Valadier, M. (1990). Young measures. Methods of Nonconvex Analysis. Lecture Notes in Math-
ematics, (1446), Springer, 152-188.

[3] Pedregal, P. (2000). Variational Methods in Nonlinear Elasticity. Society for Industrial and
Applied Mathematics.

[4] Florescu, L.C., & Godet-Thobie, Ch. (2012). Young Measures and Compactness in Measure
Spaces. Walter de Gruyter GmbH & Co. KG.

[5] Roubíček, T. (2020). Relaxation in Optimization Theory and Variational Calculus, second
edition. Walter de Gruyter.

[6] Rindler, P. (2018). Calculus of Variations. Springer International Publishing AG, part of Springer
Nature.

[7] Müller, S. (1999). Variational Models for Microstructure and Phase Transitions. Calculus of
variations and geometric evolution problems, Lecture Notes in Mathematics, (1713), Springer,
85-210.

[8] Grzybowski, A.Z., & Puchała, P. (2017). Monte Carlo simulation in the evaluation of the
Young functional values. IEEE 14th International Scientific Conference on Informatic, 221-226,
DOI: 10.1109/INFORMATICS.2017.8327250.

[9] Grzybowski, A.Z., & Puchała, P. (2018). On Young functionals related to certain class of rapidly
oscillating sequences. IAENG Int. J. Appl. Math., 48(4), 381-386.

[10] Grzybowski, A.Z., & Puchała, P. (2019). Classical Young Measures Generated by Oscillating
Sequences with Uniform Representation. Transactions on Engineering Technologies. WCECS
2017, Springer, 1-11.

[11] Jisha, C.R. (2022). Q-functional applications. Mathematica Applicanda, 50(2), 217-233.
[12] Jisha, C.R. (2022). Q-measure-valued solution of a hyperbolic partial differential equation.

PDEs Appl. Math., 6, 1-9.
[13] Emmrich, E., & Puhst, D. (2015). Measure-valued and weak solutions to the nonlinear

peridynamic model in nonlocal elastodynamics. Nonlinearity, 28, 285-307.
[14] Fjordholm, U. S., Mishra, S., & Tadmor. E. (2016). On the computation of measure-valued

solutions. Acta Numerica, 25, 567-679.



Certain convergence results for homogeneous Young measures with densities 111

[15] Gallenmüller, D., & Wiedemann, E. (2021). On the selection of measure-valued solutions for
the isentropic Euler system. J. Diff. Eq., 271, 979-1006.

[16] Puchała, P. (2023). Certain convergence results for homogeneous singular Young measures.
J. Appl. Math. Comput. Mech., 22(4), 44-52.

[17] Puchała, P. (2017). A simple characterization of homogeneous Young measures and weak L1

convergence of their densities. Optimization, 66(2), 197-203.
[18] Benedetto, J.J., & Czaja, W. (2009). Integration and Modern Analysis. Boston: Birkhäuser.


