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Abstract. The divergence theorem for a vector valued form of any degree p = 0,1, . . . ,n
is derived on a Riemannian manifold M of dimension n with a nonempty boundary ∂M.
In analogy to the classic theorem, it relates the integration over M to the integration over
∂M. In the particular case p = 0, when the vector valued form reduces to a vector field,
the theorem reduces to the classic divergence theorem.
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1. Introduction

Let M be an oriented compact Riemannian manifold of dimension n with a smooth
nonempty boundary ∂M. Let g =

〈
,
〉

be the Riemannian metric (scalar product)
on M. A particular example of such M is a bounded domain in Rn with a smooth
boundary and with the standard scalar product. Though a general Riemannian mani-
fold looks locally like Rn, the scalar product on M may vary when passing from point
to point. More information on manifolds and their geometric structures, especially
the Riemannian one, may be found in [1-5].

The classic divergence theorem is one of the most important results of modern
calculus. It relates the integration over a domain to the integration over the boundary.
It has many versions in the dependence on analytic and geometric structures of M.
In the case of a Riemannian manifold M with a nonempty boundary ∂M, it can be
stated as follows (cf. eg. [1] Theorem 5-8):

Theorem 1 If X is a (smooth) vector field on M then∫
M

divX ΩM =
∫

∂M

〈
X ,N

〉
Ω∂M. (1)

ΩM is the volume form of M determined uniquely by the Riemannian metric and the
orientation, N is the outer vector field normal to the boundary, Ω∂M is the volume
form of ∂M compatible with ΩM and divX is the divergence of X . For more details
we refer to Section 3.
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The theorem has a wide spectrum of surprising applications. The uniqueness of
the theorem follows from its vector character. Vector fields play namely an essential
role in mathematical, physical and engineering applications (see [2, 3, 5]). The ex-
amples are: the dynamical systems, fluid mechanics, electrostatics, the statics and
the dynamics of gases, liquids and solid bodies. If a manifold M represents a math-
ematical or physical object, a vector field X represents forces acting on the object.
In physics or engineering practice, the values of the force can usually be observed
and measured only at the boundary. The divergence theorem gives then information
on ”what is happening” inside. An example of surprising applications is a proof of
the known from physics Archimedean principle on hydro-static buoyancy (see exer-
cise 5-36 in [1]). Another surprising application is a simple and elegant proof of the
n-dimensional Pythagorean theorem for simplexes [6].

The aim of the paper is to generalize the classic divergence theorem for vector
fields to an analogous theorem for vector valued forms of any degree p = 0,1, . . . ,n,
i.e. to the sections of bundle Λ

p ⊗ T , where Λ
p is the bundle of (scalar) forms of

degree p on M (theorems 2 and 3 in Section 6). Vector fields, i.e. the sections of the
tangent bundle T , can be regarded as vector valued forms of degree zero. Obviously,
in this case (p = 0), the main result: Theorem 2, reduces to the classic version:
Theorem 1.

The operators of gradient and divergence in the bundle of forms are discussed
in Section 5. Interesting examples of vector forms are the gradients of characteristic
forms on foliated manifolds. A characteristic f orm χF (see [7] for the exact def-
inition) of a p-dimensional foliation F on a Riemannian manifold M is the unique
p-form on M that arises by gluing together the volume forms of leaves of F .
The gradients of such forms encode information on the geometry of foliation (cf. [7],
part II). This will be used in Section 7 for constructing examples.

All manifolds and mappings are assumed to be smooth, i.e. of class C∞. For any
bundle E over M, the space of sections of E is denoted by C∞(E).

For the notions of manifolds, bundles, vector and tensor fields, forms and also for
the tensor and exterior products discussed in this paper, we refer to [2, 4, 5]. We also
refer to [8] where the operators of the gradient and the divergence on vector valued
forms are discussed in detail.

2. Forms, vector forms, exterior products

Let M be an oriented Riemannian manifold, possibly also with a boundary,
dimM = n, with a scalar product (Riemannian metric)

〈
,
〉

g in the tangent bundle T .
The metric can naturally be extended to the cotangent bundle T ∗. The extension
will be denoted by the same symbol.
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Let Λ
p = Λ

pT ∗ be the bundle of (scalar) forms of degree p on M. The exterior
product ∧ : Λ

p ×Λ
q → Λ

p+q is defined by

(ϕ ∧ψ)(v1, . . . ,vp,vp+1, . . . ,vp+q) =

∑
σ∈sh(p,q)

signσϕ(vσ(1), . . . ,vσ(p))ψ(vσ(p+1), . . . ,vσ(p+q))

for v1, . . . ,vp,vp+1, . . . ,vp+q ∈ T , where sh(p,q) is the set of all such permutations
σ ∈ Sp+q that σ(1)< · · ·< σ(p) and σ(p+1)< · · ·< σ(p+q).

The scalar product of two simple p- f orms ϕ =ϕ1∧·· ·∧ϕp and ψ =ψ1∧·· ·∧ψp

is defined as the determinant:〈
ϕ1 ∧·· ·∧ϕp,ψ1 ∧·· ·∧ψp

〉
Λp = ∑

σ∈Sp

signσ
〈
ϕ1,ψσ1

〉
g · · · ⟨ϕp,ψσp⟩g, (2)

where ϕ1, . . . ,ϕp,ψ1, . . . ,ψp ∈Λ
1 = T ∗, and then extended to the space of all p-forms

be linearity.
Consider also the bundle of vector p- f orms: Λ⃗

p = Λ
p ⊗ T for p = 1, . . . ,n

and Λ⃗
0 = T (zero vector forms are).

The exterior product is extended onto the following pairs of forms:

∧ :


Λ

p × Λ⃗
q −→ Λ⃗

p+q

Λ⃗p ×Λ
q −→ Λ⃗

p+q

Λ⃗p × Λ⃗
q −→ Λ

p+q

according to the following rules that enable the natural understanding in all the other
cases:

ϕ ∧ (ψ ⊗Y ) = ϕ ∧ψ ⊗Y (3)

(ϕ ⊗X)∧ψ = ϕ ∧ψ ⊗X (4)

(ϕ ⊗X)∧ (ψ ⊗Y ) = ϕ ∧ψ ·
〈
X ,Y

〉
g (5)

The defined product unifies all the possible actions in the sets of both scalar and
vector forms within the only one symbol ∧.

The scalar products in T and Λ
p define the natural scalar product in Λ⃗

p by〈
ϕ ⊗X ,ψ ⊗Y

〉
Λ⃗p =

〈
ϕ,ψ

〉
Λp ·

〈
X ,Y

〉
g.

From now on, all the scalar products will be denoted simply by
〈
,
〉
.

Scalar product of forms of mixed degree like〈
ϕ ⊗X ,Y

〉
= ϕ ·

〈
X ,Y

〉
or

〈
ϕ ⊗X ,ψ

〉
=
〈
ϕ,ψ

〉
·X (6)

will be also accepted.
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3. The volume forms of M and ∂M

The Riemannian structure and the orientation define on M a unique form
ΩM ∈ C∞(Λn) characterized locally by the condition ΩM(e1, . . . ,en) = 1 for any
local positively oriented orthonormal frame e1, . . . ,en on M. The form is called
the volume f orm of M.

By taking the dual frame: e∗1, . . . ,e
∗
n, we get that locally ΩM = e∗1 ∧ . . .∧ e∗n.

Recall (cf. [5]) that the classical Hodge star, ⋆ : Λ
p −→ Λ

n−p, is the linear
operator defined by

ϕ ∧⋆ψ =
〈
ϕ,ψ

〉
ΩM (7)

for ϕ,ψ ∈ Λ
p.

Extend the Hodge star operator to the bundle of vector forms, ⋆ : Λ⃗
p −→ Λ⃗

n−p,
by:

⋆
(
ϕ ⊗X

)
=
(
⋆ϕ

)
⊗X .

Then, in analogy to (7), we have that for Φ ∈ Λ⃗
p, ψ ∈ Λ

p,

Φ∧⋆ψ =
〈
Φ,ψ

〉
ΩM. (8)

To construct the volume form of ∂M, compatible with the volume form of M,
we will work in a local coordinate system x = (y,r) on M near ∂M, such that:
y = (y1, . . . ,yn−1) is a local coordinate system on ∂M and r is the normal distance

to the boundary. Then ∂M = {x : r(x) = 0} and
∂

∂ r
is the inward unit normal vector.

The vector fields
∂

∂x1
, . . . ,

∂

∂xn−1
,

∂

∂xn
=

∂

∂ r
constitute a local frame in the tangent

bundle T M and the 1-forms: dx1, . . . ,dxn−1,dxn = dr constitute the dual frame in
the cotangent bundle T ∗M. Normalize the choice of coordinate by requiring that the
curves x(r) = (y0,r) are unit speed geodesics for r being small enough and for any
y0 ∈ ∂M. Since M is compact, the inward geodesic flow identifies a neighborhood of
∂M in M with the collar ∂M× [0,δ ) for some δ > 0. The collaring gives a splitting:
T M = T (∂M)⊕TR and a dual splitting: T ∗M = T ∗(∂M)⊕T ∗R.

Let N = − ∂

∂ r
in this coordinate system. Then N is a smooth vector field on

a neighborhood of ∂M, so, in particular, on ∂M. We will call N the field of outer
vectors normal to the boundary.

The volume f orm of ∂M is defined by

Ω∂M = ιNΩM. (9)

It determines then the orientation of ∂M compatible with the orientation of M.
The operation ιX : Λ

p → Λ
p−1 of substitution of a vector field X to a p-form ϕ is

defined by
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( ι X ϕ)(X1, . . . ,Xp−1) = ϕ(X ,X1, . . . ,Xp−1) for p > 0 (10)

and ι X ϕ = 0 for p = 0.
The outer normal field N defines near the boundary a unique decomposition of

any vector p-form Φ onto its tangent and normal parts:

Φ = Φ
tan +Φ

nrm, where Φ
nrm =

〈
Φ,N

〉
⊗N and Φ

tan = Φ−Φ
nrm. (11)

It is obvious that then, for any scalar p-form ϕ ,〈
Φ

tan,ϕ ⊗N
〉
= 0. (12)

4. Differential operators

Let ∇ be the Levi-Civita covariant derivative in the tangent bundle T , ∇ :
C∞(T ) −→ C∞(T ∗ ⊗ T ) i.e. the unique first-order linear differential operator in T
such that, for any function f on M, ∇( f X) = d f ⊗X + f ∇X and with the property
of being metric and torsion f ree (cf. [2] Sect. 2.7).

The covariant derivative ∇ can be extended naturally to the cotangent bundle T ∗,
next, by the Leibniz rule, to any tensor bundle on M, in particular to T ∗p = T ∗⊗p,
p= 1,2, . . . . Finally, it can be restricted to subbundles so, in particular, to the bundles
Λ

p, or Λ⃗
p.

With the convention: (∇ϕ)(X ,X1, . . . ,Xk) = (∇X ϕ)(X1, . . . ,Xk), the covariant
derivative ∇ in the bundle T ∗p may be treated as a map: ∇ : C∞(T ∗p)−→C∞(T ∗p+1)
and therefore can be alternated.

Since ∇ is torsion free, the operator d : C∞(Λp) −→ C∞(Λp+1), p = 0,1, . . . ,n,
of derivation of scalar forms can be expressed as the alternation of ∇:

(dϕ)(X1, . . . ,Xp+1) =
p+1

∑
i=1

(−1)p
∇ϕ(Xi,X1, . . . , X̂i, . . . ,Xp+1). (13)

The hat over a term means that the term is omitted. Note that for p = 0, dϕ = dϕ

is just the usual differential of function ϕ .
The operator d extends to operator d : C∞(⃗Λp) −→ C∞(⃗Λp+1) of derivation of

vector p-forms, as follows:

d(ϕ ⊗X) = dϕ ⊗X +(−1)p
ϕ ∧∇X , for p = 1, . . . ,n,

and

dX = ∇X , for p = 0.

Here, ∇X is treated as a vector 1-form.
Note that with our rules for the exterior multiplication (cf. (3)-(5)) we have – in

each case: ϕ ∈ C∞(Λp) (or C∞(⃗Λp)) and ψ ∈ C∞(Λq) (or C∞(⃗Λq)) – the same rule
saying that d is antiderivation:
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d(ϕ ∧ψ) = dϕ ∧ψ +(−1)p
ϕ ∧dψ.

Now (in analogy to [7], see also [8]), define two operators of order zero that will be
used in the construction of the two main operators: the gradient and the divergence.

Definition 1 j : Λ
p(E)−→ Λ⃗

p−1(E), p = 1, . . . ,n, is the linear operator defined by:
jϕ ∧X = ιX ϕ for ϕ ∈ Λ

p, X ∈ Λ⃗
0 and jϕ = 0 for ϕ ∈ Λ

0. 2

One can easily see (cf. eg. [7, 8]) that j has the following local expression (Here
and afterwards, e1, . . . ,en ∈ T will be a local orthonormal frame, and e∗1, . . . ,e

∗
n ∈ T ∗

is the dual one):

j(e∗i1 ∧ . . .∧ e∗ip
) =

p

∑
k=1

(−1)k−1e∗i1 ∧ . . .∧ e∗ik−1 ∧ e∗ik+1 ∧ . . .∧ e∗ip
⊗ eik .

Definition 2 tr : Λ⃗
p −→ Λ

p−1, p = 1, . . . ,n, is the linear operator defined by:
( trΦ)(X1, . . . ,Xp−1) = tr(X → Φ(X ,X1, . . . ,Xp−1)) and trΦ = 0 for p = 0. 2

Note that with the use of a local orthonormal frame e1, . . . ,en of T the operator

tr may be defined equivalently by: trΦ =
n

∑
i=1

〈
ιeiΦ,ei

〉
. In particular, at the boundary

with the local frame e1, . . . ,en−1 tangent to ∂M and en = N, we have:

trΦ = trΦ
tan + trΦ

nrm =
n−1

∑
i=1

〈
ιeiΦ

tan,ei
〉
+
〈
ιNΦ

nrm,N
〉
. (14)

5. The gradient and the divergence

Consider now, in analogy to [7], two first-order linear differential operators grad
and div on forms (see also [8]). The first one acts on usual forms and generalizes the
classical gradient acting on functions (scalar 0-forms), while the other one acts on
vector forms and generalizes the classical divergence acting on vector fields (vector
0-forms).

Definition 3 The gradient is the differential operator, grad : C∞(Λp) −→ C∞(⃗Λp)
p = 0,1, . . . ,n, defined by:

grad = jd+dj. (15)

Note that if, in particular, ϕ is a 0-form, i.e. a function on M, then

gradϕ = jdϕ = (dϕ)♭ (16)

where, for any 1-form (a covector) ω , ω
♭ is the vector metrically dual to ω in the

sense that ω(X) =
〈
ω

♭,X
〉
, for any vector X . In this particular case, the gradient

from (15) coincides with the usual gradient on functions.
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Proposition 1 (see [7], Theorem 1 or [8], Theorem 1) The operator grad is a deriva-
tion, i.e. for ϕ ∈ Λ

p and ψ ∈ Λ
p:

grad (ϕ ∧ψ) = grad (ϕ)∧ψ +ϕ ∧ grad ψ. (17)

Proposition 2 (see [7], Theorem 2 or [8], Theorem 2)

⋆grad = grad ⋆ . (18)

Example 1 If, near x ∈ M, ϕ = f e∗i1 ∧ . . .∧ e∗ip
for a function f and a local ortho-

normal frame e∗1, . . . ,e
∗
n which is normal at x in the sense that ∇e∗i = 0, i = 1, . . . ,n,

at x, then

gradϕ = e∗i1 ∧ . . .∧ e∗ip
⊗grad f at x. (19)

PROOF Fix x ∈ M. By (13) and (15), ∇e∗i = 0 at x implies that grad e∗i = 0 at x.
Now use Proposition 1 and equation (16). ■

Definition 4 The divergence is the differential operator, div : Λ⃗
p(E) −→ Λ

p(E),
p = 0,1, . . . ,n, defined by:

div = trd+dtr. (20)

Note that if, in particular, X is a vector field, i.e. a vector 0-form, then trX = 0
and then, by (20),

divX = trdX =
n

∑
i=1

〈
∇ei X , ei

〉
.

so, divX coincides with the usual divergence of vector field X .

Proposition 3 (see [7], Theorem 1 or [8], Theorem 1) For ϕ ∈ Λ
p and Ψ ∈ Λ⃗

p:

div(ϕ ∧Ψ) = grad ϕ ∧Ψ+ϕ ∧ div Ψ. (21)

Example 2 Similarly, as in Example 1, we have, in a local orthonormal frame,
normal at x, that

div(e∗i1 ∧ . . .∧ e∗ip
⊗X) = e∗i1 ∧ . . .∧ e∗ip

· divX at x. (22)
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6. The divergence theorem for vector forms

Theorem 2 (The divergence theorem for vector forms) Let M, dimM = n, be
a compact oriented Riemannian manifold of dimension n with a nonempty boundary
∂M. Let p ∈ {0, . . . ,n}.

For any vector form Φ of degree p on M and a scalar form ψ of the same degree:∫
∂M

〈
Φ,ψ ⊗N

〉
Ω∂M =

∫
M

〈
divΦ,ψ

〉
ΩM +

∫
M

〈
Φ, gradψ

〉
ΩM. (23)

Under the additional assumption that the form ψ is parallel, i.e. that ∇ψ = 0 or,
equivalently, that gradψ = 0, (23) reduces to∫

∂M

〈
Φ,ψ ⊗N

〉
Ω∂M =

∫
M

〈
divΦ,ψ

〉
ΩM. (24)

Remark 1 Note that in the particular case when p = 0, so when Φ = X is a vector
field and a test form ψ of degree p = 0 (i.e. a function on M) is taken to be identically
equal to 1, formula (24) reduces to:∫

∂M

〈
X ,N

〉
Ω∂M =

∫
M

divX ΩM,

i.e. to formula (1) of Theorem 1. That way our divergence theorem reduces to the
classical divergence theorem for vector fields. In the particular case n = 3, the theo-
rem is also known as the Gauss theorem and relates the f low of the vector field X
through the closed surface ∂M to the global charge of the field within the domain M
closed by the surface (see [5], Sect. 5.5.1). 2

PROOF (OF THEOREM 2) Take any Φ ∈ Λ⃗
p and ψ ∈ Λ

p.
By Proposition 3 we have

div(Φ∧⋆ψ) = divΦ∧⋆ψ +Φ∧⋆gradψ,

so, by (8),

div(Φ∧⋆ψ) =
〈

divΦ,ψ
〉

ΩM +
〈
Φ, gradψ

〉
ΩM.

Integrating over M, we get∫
M

div(Φ∧⋆ψ) =
∫

M

〈
divΦ,ψ

〉
ΩM +

∫
M

〈
Φ, gradψ

〉
ΩM. (25)

By (20), the integrand, on the left hand side of the last inequality, is equal to

div(Φ∧⋆ψ) = tr d(Φ∧⋆ψ)+ d tr(Φ∧⋆ψ).

The form Φ∧ ⋆ψ is of maximal degree n, so, its differential vanishes, and the last
relation reduces to



The divergence theorem for vector-valued forms 97

div(Φ∧⋆ψ) = d tr(Φ∧⋆ψ).

Integrating over M, and using the Stokes theorem, we get∫
M

div(Φ∧⋆ψ) =
∫

∂M
tr(Φ∧⋆ψ).

Substituting this to (25), we get∫
∂M

tr(Φ∧⋆ψ) =
∫

M

〈
divΦ,ψ

〉
ΩM +

∫
M

〈
Φ, gradψ

〉
ΩM. (26)

Now, evaluate the integral over ∂M. By (11),∫
∂M

tr(Φ∧⋆ψ) =
∫

∂M
tr(Φtan ∧⋆ψ)+

∫
∂M

tr(Φnrm ∧⋆ψ). (27)

Since the integration is taken over ∂M then, by (12) and by (8), (6) and the second
part of (14), the integrals in the right hand side of (27) are equal to∫

∂M
tr(Φtan ∧⋆ψ) = 0

and ∫
∂M

tr(Φnrm ∧⋆ψ) =
∫

∂M

〈
Φ

nrm,ψ ⊗N
〉

ιNΩM =
∫

∂M

〈
Φ,ψ ⊗N

〉
ιNΩM,

respectively. By (9) we have then∫
∂M

tr(Φ∧⋆ψ) =
∫

∂M

〈
Φ,ψ ⊗N

〉
Ω∂M. (28)

By (25) and (28) the assertion (23) follows. ■

For M =Rn and the Euclidean structure in Rn the formula (23) simplifies notedly.
In the canonical coordinate system of coordinates in Rn: x = (x1, . . . ,xn), vector

fields e1 =
∂

∂x1 , . . . ,en =
∂

∂xn and one forms e∗1 = dx1, . . . ,e∗1 = dxn constitute global

orthonormal frames for the tangent and the cotangent bundles over Rn, respectively.
The bases are dual to each other, i.e.

dx1
( ∂

∂x j

)
= δi j. (29)

For any fixed p, any vector form Φ ∈ Λ⃗
p can be written in these bases as

Φ =
n

∑
i=1

∑
i1<···<ip

Φ
i1...ıp
i dxi1 ∧·· ·∧ dxip ⊗

∂

∂xi
. (30)

where Φ
i1...ık
i are functions – the coefficients of Φ.
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Fix an increasing sequence of indices 1 ≤ i1 < · · ·< ik ≤ n and take

ψ = dxi1 ∧·· ·∧ dxip (31)

as a test form. Obviously (cf. (19)), gradψ = 0. We obtain then the following version
of the divergence theorem for vector forms of degree p in Rn.

Theorem 3 Let D be a bounded domain in Rn with a smooth boundary ∂D.
Fix p ∈ {1, . . . ,n}. Then, for any vector p-form Φ ∈ Λ⃗

p(D∪ ∂D) of shape (30) and
any sequence of indices 1 ≤ i1 < · · ·< ip ≤ n,

∫
∂D

n

∑
i=1

Φ
i1...ip
i Ni Ω∂D =

∫
D

n

∑
i=1

∂Φ
i1...ip
i

∂xi
ΩD (32)

were N =
n

∑
i=1

Ni
∂

∂xi
is the field of outer vectors normal to the boundary. 2

PROOF Take – in (24) – Ψ and ψ of shape (30) and (31), respectively and apply
(22). ■

7. Examples

Example 3 Let M = Rn \ {0} be foliated by two mutually orthogonal foliations:
Fsph and Frad . The first with leaves being concentric (n−1)-dimensional spheres Sr

around the origin with the radius r ∈ (0,∞) and the other with leaves being
1-dimensional radii Rp, i.e. half-straight lines out of the origin through p ∈ S1
(= the unit sphere). Note that for the particular case n = 3, such foliations repre-
sent in physics the equipotential surfaces and the line of forces, respectively, for the
electric field in R3 generated by a single charge at the origin. In the general case,
the characteristic forms of the considered foliations are:

χFsph(x1, . . . ,xn) =
1
r

n

∑
i=1

(−1)i−1xi dx1 ∧·· ·∧ ˆd xi ∧·· ·∧dxn (33)

and

χFrad (x1, . . . ,xn) =
1
r

n

∑
i=1

xi dxi.

It is clear that each of the characteristic forms restricted to any leaf of its foliation
is the volume form of this leaf. One can also calculate that, by (19),

grad χFsph =
1
r

(
j ΩM

)tan (34)
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and

grad χFrad =
1
r

(
idT(M)

)nrm
,

where idT(M) is the identity automorphism of the tangent bundle of M treated here
as a vector 1-form.

By Theorem 7 in [7], foliation Fsph is parallel and foliation Frad is geodesic,
what is rather obvious in this case. For the notions of parallel and geodesic foliations,
see [7]. 2

Example 4 Consider the spherical Ring Rr1r2 ⊂ Rn being the domain contained
between two spheres Sr1 and Sr2 , r1 < r2. Apply the divergence theorem to the vector
(n−1)-form grad Φ = χFsph where Φ = χFsph is given by (33). Then∫

Rr1r2

〈
divΦ,ψ

〉
ΩRr1r2

= 0 (35)

for any test (n−1)-form ψ in Rr1r2 with gradψ = 0, so, in particular, for each form
ψ = dx1 ∧·· ·∧ ˆdxi ∧·· ·∧ dxn, i = 1, . . . ,n.

Indeed, by formula (24) in Theorem 2, the integral in (35) is equal to the inte-
gral over the boundary with the integrand:

〈
Φ,ψ ⊗N

〉
which, by (34), is equal to〈

Φ
tan,ψ ⊗N

〉
, and this is equal to 0 by (12). 2

8. Conclusions and possible applications

The importance of the divergence type theorems – especially when possible appli-
cations are considered – comes from the fact that they deal with vector fields. Vector
fields namely represent forces acting on a physical body. In engineering practice, the
values of such forces can usually be measured only at the boundary. The divergence
theorem gives then some information on what is going inside the body.

A possible inhomogeneity of the material of the body or its composition from dif-
ferent layers are the cases that can easily be realized within the Riemannian structure
on M. The inhomogeneity can namely be carried out throughout a correction of the
Riemannian metric. Layers can be represented by a foliation of M.

Interesting examples of vector forms are the gradients of characteristic forms of
foliations considered in Section 7. It is known that the gradients of these forms encode
some information on the geometry of foliation (see [7], part II, Theorems 7 and 8).
In analogy to Example 4, one can also consider applications of the divergence
theorem to foliated manifolds in more general and advanced cases.

Another important example are automorphisms of the tangent bundle that can be
treated as the vector forms of degree one, i.e. as the sections of the bundle T ∗⊗T .

Finally note, that the vector character of the divergence theorem allows setting
up systems of nontrivial boundary conditions when solving boundary value problems
for differential operators on M. The natural decomposition of a vector form near
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the boundary ∂M onto its tangent and normal parts, described in Section 3, enables
defining a variety of such conditions. For example, in the theory of elastic body,
four nontrivial but natural boundary conditions: Dirichlet, Absolute, Relative and
Neumann are considered and investigated (cf. [9, 10]).
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