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Abstract. Synchronization of fractional order systems has gained great interest in various
research activities in recent years. The aim of this study is to investigate the synchronization
of a class of neural network systems with respect to the proportional Caputo fractional order
derivative. Using the generalized Gronwall inequality, a sufficient condition that possesses
the exponential convergence rate, presents and demonstrates that the error of the proposed
system converges to zero. Two illustrative numerical examples are provided to show the
applicability and validity of the obtained theoretical results.
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1. Introduction

Fractional calculus has shown to be a significant tool in modeling numerous
phenomena in the domains of engineering, physics, and economics [1-5]. The crucial
distinction between fractional order derivatives (FODs) and their integer counterparts
is that FODs have a non-local property. In evaluating the fractional order deriva-
tives (FODs) of a provided function, non-local FOD operators require the complete
history of the function. The non-local characteristic of FODs makes them more accu-
rate and appropriate than integer order derivatives [6]. As a result, many researchers
utilize FODs to characterize a wide range of real-world processes in chemical biol-
ogy, physical science, mathematical biology, viscoelasticity, and electro-chemistry.
The Riemann-Liouville and Caputo models are the most researched and used def-
initions of fractional derivatives. In recent years, several formulations of fractional
calculus have emerged in literature, such as the Atangana-Baleanu derivative, Caputo-
-Fabrizio derivative, and the one we are interested in, the proportional Caputo frac-
tional (PCF) derivative. For more details, see [7-18] and the references therein.
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Neural networks have received a lot of attention in a variety of fields. Mean-
while, numerous researchers have extended and applied the neural networks for the
fractional-order case in order to create fractional neural models. It is also worth
noting that fractional-order neural networks (FONNs) have been shown to be quite
effective in many applications, and some outstanding results have been obtained
when studying them (see [19-21]).

Recently, the synchronization of fractional-order systems in secure communica-
tion and control processing has garnered significant attention. Furthermore, the field
of synchronization of neural networks has attracted a lot of interest due to its various
applications, such as parallel image processing, biological systems, secure commu-
nication, and so on [20, 22]. Additionally, there are also some recent publications
that investigate chaotic synchronization in FONNs [23, 24]. Numerous researchers
have examined the synchronization of fractional-order systems with varying defini-
tions of the fractional derivatives. However, as far as we know, there is a dearth of re-
search on the synchronization of fractional derivatives with respect to the proportional
Caputo fractional order. Based on this, the major goal of this article is to investigate
the synchronization neural network in terms of the proportional Caputo derivative.

The remaining sections of the paper are arranged as follows. Section 2 presents
certain calculus definitions that are relevant to our current study. The main results
of this investigation are provided in Section 3. Section 4 contains numerical experi-
ments that are used to validate the main proposed results. Conclusions are provided
in Section 5.

2. Preliminaries

Definition 1 (see [16]) the PCF integral of f of order u, u > 0, and n € (0,1] is
defined by

ﬂa“”]f(v) — T[“l}(u) /ave"nl(vrc) (v— K')#ilf(K')dK.

Definition 2 (see [16]) the PCF derivative of f of order u,u € (0,1), and
n € (0,1] is defined by
DENF(v) = (2" 7,747 f) (v)
_ 7" Vonl(vox) —u
- nl—”F(l _,u)/a en (V_K) f(K)dKa (D

where

Z"f(v)=(1=n)f(v)+nf'(v).
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Definition 3 (see [16]) the PCF derivative of f with u € (0,1) and n € (0,1] is
defined by

CaNf(v) = 7" (f(V) —f(a)en"l(”)> :

Lemma 1 (see [25]) For u € (0,2], we have
exp(4)

Ep1(A) ~ , A oo,

3. Main results

Consider the following proportional fractional-order neural networks

n
CPYNE(V) = —ai&(v)+ Z bijfi(E(V))+Ji,  i=1,2,..,n. (2)
j=1
Equation (2) can be recast in a matrix form as follows:
CPNEW) = —-AEWV)+BSF(E(V))) +J, v>0, 3)
where A = diag(a;), a; >0,i=1,2,...,n. The number n denotes the number of neu-

rons in the network. The vector f(&(v)) = [fi (§(v1)). 2 (& (vz)z, o fa(€ (vn))]T is
the neuron activation function; & (v) = [£1(Vv),&(V),...,E.(V)]" € R"; B={b;;} €
R"™*" represents the connection between the i-th and j-th neurons; J = [Jy, Ja, . .. ,Jn]T
is an external input vector.

Set the following assumption:
JA: f; satisfies

i) = i)l < Lilx = 22|, )
where L; > 0.
Remark 1 Let L = max (L;). Then

1F ) = £l < Ll — xe|l- S

3.1. Synchronization

This subsection addresses the synchronization of proportional fractional-order
neural networks using linear control. Let us assume that system (3) is the drive
system, and the response system is given as follows:

C%L’"Ci(v)——aiCi(V)+ibijfj(éj(v))+fi+%(v)7 i=12,..,n. (6)
=
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or
CANEW) = ~AL (V) +BF (L)) +I+E (), v =0, @

where ¢’(v) € R" is a controller that will be provided subsequently.
If we consider the error vector & (v) = {(v) — &(Vv), then

CPNE(v)=—AE(V) +Bg(EWV))+€(v), v=>0, ®)
where g(£(v)) = f(§(v)) = F(E(V)).

To identify synchronization, we assume that the fractional-order neural network is
synced by a controller chosen as follows:

T (v)=—-0&(v),

where Q = diag(q1,q2,--.,qn), qi > 0, is called the gain matrix.
Therefore, the synchronization error system (8) can be written as follows:

CTyN6(v) = ~CE(v) +Bg(E(v)), V=0, ©)

where C = A+ Q.
In what follows, we demonstrate that the solution of the synchronization error system
(8) converges to zero, which confirms that synchronization occurs.

Theorem 1 Assume that assumption 7] is satisfied. Then, the solution of the system
(9) converges to zero, if the following condition holds:

11 1 1
1= (n+T(u)rLiks B )

A= >0,
n
where
k= sup||Ey u (—=Cr)|l.
r>0
PROOF The solution of the system (9) is provided by
~VH oy,
g(v):Eﬂ,l(—Cn—)e T E(0)+
Y b, _ ~, V—s
mot [T v ) B (- EC MBI () ~ £ (606l

(10)
Therefore

IEWI <e T YIEO)+

Vo, ~ V=
neL [ g B (2

V) IIBIHIE (s)llds



80 A.M. Nagy, A. Ben Makhlouf, A. Alsenafi, F. Alazemi

(a-n)
LetG(v)=e 7 Y[|&(V)]|. Thus

v
G(v) < Hé"(O)IHkLn*"HBH/O (v—s)""'G(s)ds. (12)
Using generalized Gronwall inequality (see [26]), we get
Lk||B
G(v) < [160) | (L) V). (13)
According to Lemma 1, there exists M > 0 such that
U] Lk||B
el < B mw EE s
(-, (TwLs)E,,
< Mem Vel " 1€ (0)]|
< M| E(0)]]. (14)
[

4. Numerical experiments

In this section, two illustrative numerical examples will be provided to demon-
strate and verify the theoretical results given in Section 2. The numerical technique
used to solve the proposed problem relies on a decomposition formula for the pro-
portional Caputo derivative, which is described in Ref. [13].

Example 1 Consider the following three-dimensional FONN as follows:

25" = —& +0.03 tanh & —0.09 tanh &, +0.5,
TN E, = —& +0.06 tanh &) +0.09 tanh & +0.06 tanh & + 1, (15)
‘@(l)imé =—&,—0.03 tanh &; +0.09 tanh &3 + 1.5,

where 1 =095 1=08 ¢&v)=[&(v)&(V)&W)]. A=diag(1,1,1),
J=1[0.5115]", f(E(v)) = 0.03[tanh(&; (Vv)) tanh(&,(V)) tanh(E3(Vv))]T and

1 -3 0
B={(2 3 2|
-1 0 3

In the response system, we pick out the elements of the gain feedback as q; = 4,
g2 = 3, and g3 = 4. We can observe from the data that the nonlinear function tanh(-)
satisfies the Lipschitz condition with the Lipschitz constant L = 0.03. Moreover,
we have ||B|| =7 and k = sup||Ey; u, (—CV*)|| ~ 1.

v>0
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Fig. 1. Trajectories of the drive and response systems of Example 1 with u =0.95, and n = 0.8

1— [+ (D(w) | B|ILK) ]

This implies that A = = 0.0086 > 0. Thus, the conditions

of Theorem 1 are satisfied, and vge can accomplish the synchronization between
drive and response systems. The trajectories of the drive and response systems
are depicted in Figure 1. Furthermore, Figure 2 depicts the synchronization error.
Additionally, the effects of parameters yt and 1 on the synchronization error of the
drive and response systems at it = 0.99, n = 0.95 and u = n = 0.75, respectively,
as well as the time response of two systems are displayed in Figures 3-6. According
to the numerical results, the aforementioned systems are exponentially synchronized,
which validates the theoretical results.
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Fig. 3. Trajectories of the drive and response systems of Example 1 with g = 0.99, and n = 0.95
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Fig. 5. Trajectories of the drive and response systems of Example 1 with g = 0.75, and n = 0.75



84 A.M. Nagy, A. Ben Makhlouf, A. Alsenafi, F. Alazemi

Fig. 6. The trajectories of synchronization error for Example 1 at 4 = 0.75, and n = 0.75

Example 2 Consider the FONN system given in (2) with 4 = 0.9, n = 0.75,
E(v) = [&i(v) &(v) &), A = diag(1,1,1), J=1 15 25,
F(E(v)) =0.01[sin(&;) sin(&,) sin(&3)]” and

2 -1 -3
B=|-3 2 1
1 -3 2

In the response system, we select the coefficients of the gain feedback as ¢q; =1,
q» = 2 and g3 = 3. It is obvious that the nonlinear function sin(-) satisfies
the Lipschitz criterion with L = 0.01. In addition, we have |B|| = 6 and
1
1— r B||Lk)*
k = sup||Eyu(—CVv")|| =~ 1. Accordingly, A = Uk S;J)H IE&)] =
v>0

= 0.2750 > 0. As a result, the prerequisites of Theorem 1 are met, and therefore
synchronization occurs between the drive and response systems. Figures 7 and 8
demonstrate the trajectories of the systems &(v) and {(v), as well as the synchro-
nization error. Moreover, Figures 9 and 10 show the trajectories of the systems & (V)
and §(v), and their synchronization error at 4 = 0.7, and 1 = 0.75, respectively.
It is evident from numerical simulations that the FONNs are synchronized and
attained after a short transient period. This aligns flawlessly with the obtained
theoretical outcomes.
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Fig. 7. Trajectories of the drive and response systems of Example 2 with 4 = 0.9, and n = 0.75
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5. Conclusion

Synchronization of fractional order systems has garnered significant attention
recently due to its potential applications in control processing and secure commu-
nication. Synchronization of fractional-order systems has been examined by several
authors. However, as far as we know, the results on synchronization of a class of
proportional Caputo FONNSs are limited. Based on that, the main goal is this paper
to investigate the neural network synchronization in the sense of the proportional
Caputo fractional derivative. Using the Gronwall inequality, it is demonstrated that
the synchronization error converges to zero. Additionally, to validate and verify the
given theoretical analysis, two numerical experiments are provided. The simulation
results showed that they coincide with the theoretical analysis. Finally, it is worth
mentioning that the proposed idea can be prospectively extended for other types of
fractional definitions.
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