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Abstract. In this paper, we study the velocity field corresponding to the unsteady flow of  

a second-grade fluid with a generalized Caputo fractional derivative in a circular cylinder. 

The analytical solution of the velocity field has been obtained utilizing the �-Laplace and the 

finite Hankel transforms. The solution is obtained in terms of a series containing the Mittag-

-Leffler functions, being the generalization of the exponential function. The effect of the frac- 

tional parameters � and � on fluid motion are illustrated graphically for three different cases. 

The model discussed in this work is more general and can be applied to other fluid models.  
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1. Introduction  

Recent advancements in fractional calculus have prominently showcased its mod-

ern applications across differential and integral equations, physics, signal processing, 

fluid mechanics, viscoelasticity, mathematical biology, and electrochemistry [1-9]. 

Undoubtedly, fractional calculus has emerged as a dynamic and innovative mathe-

matical tool for solving a wide array of problems in mathematics, science, and engi-

neering [10-13]. Fractional differential equations, which involve derivatives of  

non-integer orders, are used to model systems with memory and long-term effects. 

Several methods, such as analytical techniques, numerical approaches, and approxi- 

mate solutions, are available to solve these equations [14-23]. The integral transforms 

technique represents a systematic, efficient, and powerful tool [17-23]. Consider  

the dimensionless equation of an incompressible fractional second-grade fluid  

with a source term in a circular cylinder [12], which is given by 
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 �����,
�(
, �) = ��(�) + �1 + � �����,
� ����(
, �)�
� + 1
 ��(
, �)�
 � + ��(
, �) + �(
, �), 
  (1) 

with initial and boundary conditions 

 �(
, 0) = �(
),  0 ≤ 
 ≤ !, (2) 

 �(!, �) = ℎ(�),  � ≥ 0, (3) 

where � is the velocity of flow, 
 is the radial coordinate, � is the time, �(�) is the 

pressure gradient, �(
, �) is the source term, �, �, and � are constants such that � is 

related to the pressure fluctuation amplitude, � is the ratio between the second-grade 

fluid parameter and the fluid density, whereas  �����,

 is the left generalized Caputo 

fractional derivative defined as [18] 

 �����,
�(�) = 1$(1 − �) & ��
 − '

� �(� �)(')*'�

� ,  0 < � < 1,  � > 0, (4) 

where $(⋅) is the Gamma function. 

This model is applied in simulating viscoelastic fluid flows in confined geome-

tries, such as blood flow in arteries, polymer processing in cylindrical molds, and 

fluid transport in pipelines, where memory effects and nonlocal behaviors are  

significant [24-26]. 

In this paper, we use the �-Laplace and finite Hankel transforms to obtain  

the analytic solution of Eq. (1) with the conditions (2) and (3) in general form.  

In addition, we illustrate the effect of the fractional parameters � and � on the  

obtained solution graphically, when �(�) = �� + �. 012� [12] with the following 

three different cases: 

Case 1  At  �(
, �) = 0, �(
) = 0, ℎ(�) = 0,  (5) 

Case 2  At �(
, �) = 3(
)
 3 ��

� � ,   �(
) = 0,   ℎ(�) = 0, (6) 

Case 3  At  �(
, �) = 0, �(
) = 4(4� + 
�)567 , ℎ(�) = 0,  (7) 

where ��, �., and 8 are constants, 3(
) and 3 <�=

 > are Dirac delta functions. 

This paper is organized as follows: Section 2 presents foundational definitions 

and tools related to fractional calculus. In Section 3, the solution of Eq. (1) with  

the conditions (2) and (3) is investigated. In Section 4, the effect of the fractional 

parameters � and � on the velocity profile is illustrated graphically for three different 

cases. Finally, in Section 5, we present the conclusions of this paper. 
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2. Basic definitions and tools 

In this section, we set some definitions and lemmas relevant to the fractional  

derivatives. 

 

Definition 1 Let � ∶ [0, ∞) → ! be a real-valued function. The �-Laplace trans-

form of �  is defined as 

ℒ
C�(�)D = �∗(F) = & 0(G�=
 �(�) *��.(

H

� , � > 0, (8) 

for all values of s, where the integral is valid [18]. 

 

Theorem 1 Let � ∶ [0, ∞) → ! be a real-valued function such that its �-Laplace 

transform exists. Then 

ℒ
 I� ��

� �J = ℒC�(�)D = K(F),   ℒ
(.CK(F)D = � ��


� �, (9) 

where ℒC�(�)D is the usual Laplace transform [18]. 

 

Lemma 1 [18] 

1)  ℒ
 I3 ��

� � J = 1,    2)  ℒ
M�NO = �N
  $(1 + ��)

F.PN

,   � ∈ !,   F > 0. 

Lemma 2 Let � ∶ [0,  ∞) → ! be a real-valued function such that its �-Laplace 

transform exists. Then [18] 

 ℒ
M ���,
 �(�)�� O = F�ℒ
 C�(�)D − F�(.�(0). (10) 

Definition 2 Let � and T be two functions that are piecewise continuous at each 

interval [0, U] and of exponential order. We define the �-convolution of � and T  

by [18] 

�� ∗
 T�(�) = & � �(�
 − '
).
� T(') *''.(
 .�
�  (11)

Theorem 2 Let � and T be two functions that are piecewise continuous at each 

interval [0,  U] and of exponential order 0WX== . Then [18] 

 ℒ
M� ∗
 TO = ℒ
 C�D ℒ
CTD,   F > �. (12) 
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Lemma 3 Let !0( �) > 0 and Y Z
G[Y < 1. Then [18]  

ℒ
(. I F�(N
F� − \J = ��


� �N(. ]�,N �\ ��

� ���, (13)

where ]�,N(^) is the two parameter Mittag-Leffler function that is given by 

]�,N(^) =   _ ^`
$(a� + �)

H

`b�
,  ^ ∈ c, !0( �) > 0. (14)

Proof 

   ℒ
(. I F�(N
F� − \J = ℒ
(. d 1FN _ e \F�f`H

`b�
g

= ℒ
(. d_ \`
$(a� + �)�`�PN(. �`�PN(. $(a� + �)F`�PN

H

`b�
g

= _ \`
$(a� + �)�`�PN(. ℒ
(. h�`�PN(. $(a� + �)F`�PN i

H

`b�
= _ \`

$(a� + �)�`�PN(. �
(`�PN(.)
H

`b�
= ��


� �N(. _ 1$(a� + �) �\ ��

� ���`H

`b�
= ��


� �N(. ]�,N �\ ��

� ���. 

Definition 3 The finite Hankel transform of order j of a function �(
) in the 

interval 
 ∈ [0, !] is defined as 

klC�(
)D = �ml(a1) = & 
�(
)
n

�
ol(
a1)*
, (15)

where a1(0 < a. < a� < ⋯ ) are the roots of the equation ol(!a1) = 0, and ol  

is the Bessel function of the first kind and j-order [21]. 

 

Definition 4 The inverse finite Hankel transform is defined by [27] 

kl(.M�ml(a1)O = �(
) = 2!� _ �ml(a1) ol(
a1)
olP.� (!a1)

H

1b.
. (16)
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Lemma 4 [27] 

i. klC�)(
)D = a12j [(j − 1)klP.C�(
)D − (j + 1)kl(.C�(
)D],   j ≥ 1, (17)

provided �(
) is finite at 
 = 0. 

ii. When j = 0,  
k� h�q(
) + 1
 �)(
)i = −a1��m�(a1) + !a1�(!)o.(!a1). (18)

Lemma 5 [27] The following identities hold true: 

1)  k� h 3(
)
 i = 1.    2)  k� h 4(4� + 
�)(r� i = 0(s`t . 
3. Solution procedure 

In this section, we will determine the solution for the fractional differential  

Eq. (1) along with corresponding initial and boundary conditions, Eqs. (2) and (3). 

To do this, we use the finite Hankel transform of order zero with respect to the radial 

coordinate 
 and the �-Laplace transform with respect to the time variable �. 

Applying the zeroth-order finite Hankel transform to Eq. (1), and using Eq. (18), 

we have 

 �����,
�̄�(a1, �) =  �a1 !�(�)o.(!a1)
+ �1 + � �����,
� <−a1��̄�(a1, �) + !a1�(!, �)o.(!a1)>+ ��̄�(a1, �) + �̄�(a1, �). 

(19)

Using the boundary condition Eq. (3), Eq. (19) becomes 

 �����,
�̄�(a1, �) = �a1 !�(�)o.(!a1)
+ �1 + � �����,
� <−a1��̄�(a1, �) + !a1ℎ(�)o.(!a1)>
+ ��̄�(a1, �) + �̄�(a1, �). 

(20)

Applying the �-Laplace transform to Eq. (20), and using Eq. (10), we get 

        F��̄�∗(a1, F) − F�(.�̄�(a1, 0)
= �a1 !o.(!a1)�∗(F) − a1��̄�∗(a1, F)
− �a1��F��̄�∗(a1, F) − F�(.�̄�(a1, 0)� + !a1o.(!a1)ℎ∗(F)+ �!a1o.(!a1)�F�ℎ∗(F) − F�(.ℎ(0)� + ��̄�∗(a1, F)+ �̄�∗(a1, F). 

(21)
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Applying the zeroth-order finite Hankel transform to the condition Eq. (2), we have 

 �̄�(a1, 0) = �m�(a1). (22) 

Substituting Eq. (22) into Eq. (21), we get 

        F��̄�∗(a1, F) − F�(.�m�(a1)
= �a1 !o.(!a1)�∗(F) − a1��̄�∗(a1, F)
− �a1� <F��̄�∗(a1, F) − F�(.�m�(a1)> + !a1o.(!a1)ℎ∗(F)
+ �!a1o.(!a1)�F�ℎ∗(F) − F�(.ℎ(0)� + ��̄�∗(a1, F)
+ �̄�∗(a1, F). 

(23)

Rearranging and writing Eq. (23) in a more suitable form, we obtain 

           �̄�∗(a1, F) = �!o.(!a1)
a1�1 + �a1�� ⎣⎢

⎢⎢
⎡ �∗(F)
F� − � � − a1�1 + �a1��⎦⎥

⎥⎥
⎤

+ �m�(a1)
⎣⎢
⎢⎢
⎡ F�(.
F� − � � − a1�1 + �a1��⎦⎥

⎥⎥
⎤

+ !�a1o.(!a1)
�1 + �a1�� ℎ∗(F)

+ !a1o.(!a1)(1 + ��)
�1 + �a1���

⎣⎢
⎢⎢
⎡ ℎ∗(F)
F� − � � − a1�1 + �a1��⎦⎥

⎥⎥
⎤

− !�a1o.(!a1)
�1 + �a1�� ℎ(0)

⎣⎢
⎢⎢
⎡ F�(.
F� − � � − a1�1 + �a1��⎦⎥

⎥⎥
⎤

+ 1
�1 + �a1�� ⎣⎢

⎢⎢
⎡ �̄�∗(a1, F)
F� − � � − a1�1 + �a1��⎦⎥

⎥⎥
⎤
. 

(24)
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The inverse �-Laplace transform is applied to Eq. (24), which yields 

�̄�(a1, �)
= �!o.(!a1)

a1�1 + �a1�� |�(�) ∗
 ��

� ��(. ]�,� � � − a1�1 + �a1� ��


� ���}
+ �m�(a1)]� � � − a1�1 + �a1� ��


� ��� + !�a1o.(!a1)
�1 + �a1�� ℎ(�)

+ !a1o.(!a1)(1 + ��)
�1 + �a1��� |ℎ(�) ∗
 ��


� ��(. ]�,� � � − a1�1 + �a1� ��

� ���}

− !�a1o.(!a1)
�1 + �a1�� ℎ(0)]� � � − a1�1 + �a1� ��


� ���
+ 1

�1 + �a1�� |�̄�(a1, �) ∗
 ��

� ��(. ]�,� � � − a1�1 + �a1� ��


� ���}. 

(25)

Finally, applying the inverse Hankel transform to Eq. (25), the solution of Eq. (1) 

can be expressed as 

�(
, �)
= 2�! _ o�(
a1)

a1�1 + �a1��o.(!a1) |�(�) ∗
 ��

� ��(. ]�,� � � − a1�1 + �a1� ��


� ���}
H

1b.
+ 2!� _ o�(
a1)

o.�(!a1) �m�(a1)]� � � − a1�1 + �a1� ��

� ���

H

1b.
+ 2�! _ a1o�(
a1)ℎ(�)

�1 + �a1��o.(!a1)
H

1b.
+ 2! _ a1(1 + ��)o�(
a1)

�1 + �a1���o.(!a1) |ℎ(�) ∗
 ��

� ��(. ]�,� � � − a1�1 + �a1� ��


� ���}
H

1b.
− 2�! _ a1ℎ(0)o�(
a1)

�1 + �a1��o.(!a1) ]� � � − a1�1 + �a1� ��

� ���

H

1b.
+ 2!� _ o�(
a1)

�1 + �a1��o.�(!a1) |�̄�(a1, �) ∗
 ��

� ��(. ]�,� � � − a1�1 + �a1� ��


� ���} .H

1b.
 

(26)

4. Graphical illustration 

In this section, we present a graphic illustration of the effect of the fractional 

parameters � and � on the velocity profile Eq. (26) when � = 0.4, � = 0.55, � = 0, ! = 1, 8 = �
�, �� = 0.7, �. = 0.8, and 4 = 5 for the three different cases mentioned 

above. 
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a) b) 

   
Fig. 1. The velocity flow (26) for case 1 when: a) � = 0.5 and � = 0.8 at different values 

of �, b) � = 0.5 and � = 2 at different values of � 

a) b) 

   
Fig. 2. The velocity flow (26) for case 2 when: a) � = 0.5 and � = 0.8 at different values 

of �, b) � = 0.5 and � = 0.5 at different values of � 

a) b) 

   
Fig. 3. The velocity flow (26) for case 3 when: a) � = 0.5 and � = 0.8 at different values 

of �, b) � = 0.5 and � = 0.5 at different values of � 
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Figures 1-3 show the absolute value of the velocity flow at different values of  � and � for the three cases mentioned above, respectively. In Figures 1a, 2a and 3a, 

we can notice that with increasing the value of � the flow velocity decreases.  

In Figure 1b, as the value of α increases, the flow velocity decreases, while in Figures 

2b and 3b, as the value of α increases, the flow velocity increases. 

5. Conclusions 

The �‐Laplace and the finite Hankel transforms are regarded as powerful tech-

niques for solving fractional differential equations. The dimensionless equation of 

an incompressible fractional second-grade fluid in a circular cylinder has been in-

vestigated to obtain the exact solution for the velocity field. The fractional derivative 

is taken as the generalized Caputo, which is beneficial in many studies and is widely 

accepted. The obtained solution is expressible in terms of a series involving a new 

bivariate Mittag-Leffler function defined very recently and is already being discov-

ered in various applications. The solution obtained in [12] can be considered as  

a special solution of our result, which is case 1 in our model. The solution is illustrated 

graphically for three different cases to demonstrate the influence of the fractional 

parameters � and � on the velocity profile. 
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