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Abstract. This paper investigates the inverse Laplace transform of a certain class of func-

tions. This inverse Laplace transform is obtained in the form of an infinite series of the three- 

-parameter Mittag-Leffler function. Additionally, we found the sum of an infinite series of 

Mittag-Leffler functions with three parameters in terms of the Wright function. As an appli-

cation, we get an exact solution of the time-fractional diffusion-wave equation with the 

Hilfer-Prabhakar time-fractional derivative using Laplace and Fourier transforms. 
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1. Introduction  

The Mittag-Leffler function is a vital function that is widely used in fractional 

calculus. Just as the exponential function that plays an important role in the solution 

of the integer order differential equations, the Mittag-Leffler function appears in  

several solutions of problems in fractional order differential and integral equations 

[1, 2]. These solutions can be rewritten with respect to elementary functions or other 

special functions, such as the Wright function [1]. There are many generalizations of 

the Mittag-Leffler function, but in this paper, we are interested in only one of them, 

called the three-parameter Mittag-Leffler function [3], which is given in the follow-

ing definition: 
 

Definition 1. [3, 4] The Mittag-Leffler function with three parameters is given by 

��,�� ��� = 
 ��� + ���������� + �� ���!�
��� ,    ����� > 0,   ����� > 0,   ����� > 0. (1) 
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When � = 1, we obtain the two-parameter Mittag-Leffler function ��,� and with  � = � = 1 we get the one-parameter Mittag-Leffler function �� . In the case of  � = � = � = 1, Eq. (1) reduces to the exponential function. 

The Wright and Minardi functions will be used in the following sections, so we 

give their definitions as follows: 

 

Definition 2 [5] The Wright function ���; �,  � is defined as 

���; �,  � = 
 ���! ���� +  ��
��� , � > −1. (2) 

Definition 3 [6] The Mainardi function "��; �� is defined as 

"��; �� = ��−�; −�, 1 − �� = 
 �−1�����! ��−�� + 1 − ���
��� ,   0 < � < 1. (3) 

The following section presents the theorems related to the three-parameter Mittag- 

-Leffler and Wright functions. The last section illustrates an application of our  

theorems. 

2. Basic theorems  

In this section, we derive two theorems involving the three-parameter Mittag- 

-Leffler function. A subsequent corollary will be discussed after each theorem. 

 

Theorem  1  The  inverse  Laplace  transform  of  the  function  $%&'(�$� − )�*&e',-%&�-.'/�*&  is 

0'( 1$23'(�$� − )��3e',-%&�-.'/�*& 4 =  
 �−1��5�
�!  6�27���3 ��7(�

�
��� ��,('�27���3 ��7(�'�3��7(� �)6��, 

  (4) 

where �, 5, ) are arbitrary positive constants, 0 < ℎ < 2 and � ≥ 0. 

 

Proof 

The inversion formula of the Laplace transform is given by [6] 

0( = 0'( 1$23'(�$� − )��3e',-%&�-.'/�*& 4 = 12;< = $23'(�$� − )��3e->',-%&�-.'/�*& ?$.@A  

 



58 M.S. Abdel Latif, H. Elhadedy, A.H. Abdel Kader 

In the above complex integral, the Bromwich path Br can be deformed into the 

Hankel path Ha. Assuming that B = $6, we get  

0( = 12;< C623D = B23'( ECB6D� − )F�3 eG',CG> D%&ECG> D.'/F*& ?B.HI  

Utilizing the Taylor series of the exponential function, we get 

0( = 12;< C623D = B23'( ECB6D� − )F�3 eG 
 J�−1���! 5� CB6D�23 ECB6D� − )F��3 K�
��� ?BHI  

= 12;< C623D 
 �−1��5�
 �! 6�23

�
��� =  eG  B23��7(�7��3 ��7(�'(

6��3 ��7(�HI  E1 − ) C6BD�F�3��7(� ?B. 
Using the Taylor series expansion  

E1 − ) C6BD�F�3��7(� = 
 �−1�L Γ N�2 �� + 1� + 1OΓ�< + 1� Γ N�2 �� + 1� − < + 1O E)6�B� FL ,�
L��   P) C6BD�P < 1, 

we get 

0( = 12;< C623D 
 �−1��5�
�! 6�23 7��3 ��7(�

�
��� 
 �−1�L � N�2 �� + 1� + 1O �)6��L

��< + 1� � N�2 �� + 1� − < + 1O
�

L�� =  eG  BQ
HI ?B, 

where, R = 23 �� + 1� + ��3 �� + 1� − �< − 1. 
Using the relation [6], 

(S�I� = (3TL U  eG  B'IHI ?B, we get 

0( = 1C623D 
 �−1��5�
 �! 6�23 7��3 ��7(�

�
��� 
 �−1�L � N�2 �� + 1� + 1O �)6��L

��< + 1� � N�2 �� + 1� − < + 1O � E�< + 1 − �ℎ + ���2 �� + 1�F
�

L�� .
Since [7], 

S�V7( �S�V'L7(� = �−1�L�−W�L , we get 
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0( = 1C623D 
 �−1��5�
�! 6�23 7��3 ��7(�

�
��� 
 C− �2 �� + 1�DL  �)6��L

��< + 1� � E�< + 1 − �ℎ + ���2 �� + 1�F
�

L��  

= 
 �−1��5�
�! 6�27���3 ��7(�

�
��� ��,('�27���3 ��7(�'�3��7(� �)6��. 

Corollary 1 [6] The inverse Laplace transform of the function $%&'(�',-%&  is  

given by 

0'( 1$23'(e',-%& 4 = 1623 " C56'23; ℎ2D, (5) 

where 5 is an arbitrary positive constant and 0 < ℎ < 2. 

 
Proof 

From Theorem 1, we can put � = 0, to get 

0'( 1$23'(e',-%& 4 = 
 �−1��5�
�! 623��7(�

�
��� ��,('23��7(�� �)6��. 

From [8], we have ��,�� ��� = (X���. So, we get 

0'( 1$23'(e',-%& 4 = 1623 
 �−1�� C56'23D�
�! Γ C− ℎ�2 + 1 − ℎ2D

�
��� = 1623 " C56'23; ℎ2D. 

Theorem 2 For 0 < � < 1, we have 

     
 �−1�Y5YZ! 6'��Y7(��
Y�� ��,('��Y7(�'�Y7(� �)6��

= �/,[6'���−56'�; −�, 1 − �� − )��−56'�; −�, 1�\, (6) 

where 5 and ω are arbitrary constants. 
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Proof 

�. ^. _ = J
 �)5�YZ!�
Y�� K `6'� 
 �−5�L6'�L<! ��−�< + 1 − ���

L�� − ) 
 �−5�L6'�L<! ��−�< + 1��
L�� a 

= J
 �)5�YZ!�
Y�� K `
 �−5�L6'��L7(�<! ��−��< + 1� + 1��

L�� − ) 
 �−5�L6'�L<! ��−�< + 1��
L�� a. 

Assuming < + 1 = b, we get 

�. ^. _ = J
 �)5�YZ!�
Y�� K `
 �−5�A'(6'�A�b − 1�! ��−�b + 1��

A�( − ) 
 �−5�L6'�L<! ��−�< + 1��
L�� a 

= J
 �)5�YZ!�
Y�� K `
 �−5�A'(6'�A�b − 1�! ��−�b + 1��

A�( − ) 
 �−5�A6'�Ab! ��−�b + 1��
A�( − )a 

= J
 �)5�YZ!�
Y�� K `
 �−5�A'(6'�A�b + )5��b�! ��−�b + 1��

A�( − )a 

= J
 �)5�YZ!�
Y�� K `
 �−5�A'(6'�A�b + )5��b�! ��−�b + 1��

A�� a 

0. ^. _ = 
 �−1�Y5YZ! 6'��Y7(��
Y�� ��,('��Y7(�'�Y7(� �)6��. 

It is well known that [8] 

�c,d'e �6� = 
 �−1�f NghO��ih + j� 6fe
f�� ,   g ∈ l. 

So, we have  
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                  0. ^. _ = 
 m�−1�Y5Y6'��Y7(�Z! 
 �−1�f CZ + 1h D �)6��f
�[�h + 1 − ��Z + 1�\

Y7(
f�� n�

Y�� =
= 
 
 �−1�Y'f�Z + 1 �5Y)f6'��Y'f7(�h! �Z − h + 1�!  ��−��Z − h + 1� + 1�

Y7(
f��

�
Y��

= 
 J
 �−1�Y'f�Z + 1 �5Y)f6'��Y'f7(�h! �Z − h + 1�!  ��−��Z − h + 1� + 1� − 5Y)Y7(Z!
Y

f�� K�
Y��

= 
 J
 �−1�Y'f�Z − h + h + 1 �5f5Y'f)f6'��Y'f7(�h! �Z − h + 1�!  ��−��Z − h + 1� + 1�
Y

f�� K − ) 
 5Y)YZ!�
Y��

�
Y��

= 
 J
 �−1�Y'f�Z − h�5f5Y'f)f6'��Y'f7(�h! �Z − h + 1�!  ��−��Z − h + 1� + 1�
Y

f�� K�
Y��

+ 
 J
 �−1�Y'f h 5f5Y'f)f6'��Y'f7(�h! �Z − h + 1�!  ��−��Z − h + 1� + 1�
Y

f�� K�
Y��

+ 
 J
 �−1�Y'f  5f5Y'f)f6'��Y'f7(�h! �Z − h + 1�!  ��−��Z − h + 1� + 1�
Y

f�� K�
Y�� − ) 
 5Y)YZ!�

Y��
= J
 �)5�YZ! � 

Y�� K J
 h�−1�f5f6'��f7(��h + 1�!  ��−��h + 1� + 1��
f�� K

+ J
 �Z��)5�YZ! � 
Y�� K J
 �−1�f5f6'��f7(��h + 1�!  ��−��h + 1� + 1��

f�� K
+ J
 �)5�YZ! � 

Y�� K J
 �−1�f5f6'��f7(��h + 1�!  ��−��h + 1� + 1��
f�� K − ) 
 5Y)YZ!�

Y��
= J
 �)5�YZ! � 

Y�� K J
 h�−1�f5f6'��f7(��h + 1�!  ��−��h + 1� + 1��
f�� K

+ J)5 
 �)5�YZ! � 
Y�� K J
 �−1�f5f6'��f7(��h + 1�!  ��−��h + 1� + 1��

f�� K
+ J
 �)5�YZ! � 

Y�� K J
 �−1�f5f6'��f7(��h + 1�!  ��−��h + 1� + 1��
f�� K − ) 
 5Y)YZ!�

Y��
= J
 �)5�YZ! � 

Y�� K J
 �)5 + h + 1��−1�f5f6'��f7(��h + 1�!  ��−��h + 1� + 1��
f�� − )K. 
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Let b = h + 1, to get 

                 0. ^. _ = J
 �)5�YZ! � 
Y�� K `
 �b + )5��−1�A'(5A'(6'�Ab!  Γ�−�b + 1��

A�( − )a
= J
 �)5�YZ! � 

Y�� K `
 �b + )5��−5�A'(6'�Ab!  Γ�−�b + 1��
A�� a = �. ^. _ 

Corollary 2 For the arbitrary constants 5 and ), we have  


 �−1�o5op! 6'(3�o7(��
o�� �(3,('(3�o7(�'�o7(� C)6(3D = �/, ` 1√;6 �',&r> − ) �bst C 52√6Da, (7) 

where �bst��� is the complementary error function [9]. 

 

Proof 

It is known that [10] 

� C−6; − 12 , 12D = 1√; �'>&r ,   � C−6; − 12 , 1D = erfc C62D. 
Using the above relations and putting � = (3 in Theorem 2, we complete the proof. 

3. Illustrating application 

In this section, we use the Laplace and Fourier transforms with the help of the 

previous theorems to get an exact solution of the following time-fractional diffusion- 

-wave equation with Hilfer-Prabhakar derivative [10] 

  yz�,/,�{�,� |�}, 6� = � |~~, (8) 

associated with the conditions 

 |�}, 0� = �B�}�, 0 < � ⩽ 2, (9) 

 |>�}, 0� = 0, 1 < � ⩽ 2, (10) 

where  yz�,/,�{�,� |�}, 6� is the Hilfer-Prabhakar derivative of order � that will be  

defined in Appendix A associated with some of its properties. The time-fractional 

diffusion-wave equations can be used to model many physical and engineering  

phenomena such as in electrodynamics [11], wave propagation in viscoelastic  

media [12], and anomalous diffusion in porous media with fractal structure [13]. 
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Now, we can get the exact solution of Eq. (8) with the conditions (9) and (10) 

using the Laplace and Fourier transforms as follows: 

By using Lemma 1 and then applying the Laplace transform to Eq. (8), we obtain 

$��1 − )$'��� |��}, $� − $�'(�1 − )$'��� |�}, 0�
− $�'3�1 −  )$'���  �|�}, 6��6 �>�� = � �3�}3 |��}, $�. (11)

Then, using the initial conditions (9) and (10), we get 

$��1 − )$'��� |��}, $� − �B�}� $�'(�1 − )$'��� = � �3�}3 |��}, $�. (12)

Now, applying the Fourier transform to Eq. (12) gives 

|�∗�b, $� = �$�'(�1 − )$'���$��1 − )$'��� + �b3. (13)

After that, using Eq. (A6) and then taking the inverse Fourier transform to Eq. (13), 

we get 

               |��}, $� = 12; � �$�'(�1 − )$'���$��1 − )$'��� + �b3 e'LA~ db�
'�= �2√� $(3��'���'(�$� − )��3e'|~|√I -�&���.*��-.'/�*& . (14)

Using Theorem 1 by putting ℎ = � − ��, 5 = |~|√I , the inverse Laplace transform  

of Eq. (14) becomes 

|�}, 6� = �2√� 
 J 1�! E−|}|√� F� 6'�3��7(���,('�3��7(�'�3��7(� �)6��K�
��� , (15)

which is a general solution to Eq. (8)-Eq. (10). We can get a special solution for 

Eq. (8)-Eq. (10) in the form of the Wright function by using Theorem 2 and setting � = 2 and � = �3 in solution (15). In this case, we get 

|�}, 6� = �2√� e/|~|√I `6'�3� E−|}|√� 6'�3; −�2 , 1 − �2F − )� E−|}|√� 6'�3; −�2 , 1Fa. 
  (16) 
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4. Conclusions  

In this paper, an inverse Laplace transform in the form of an infinite series of the 

three-parameter Mittag-Leffler functions is derived for a new class of functions, 

which is given in Theorem 1. This theorem generalizes the work done in [6] as  

mentioned and reproved in Corollary 1. The inverse Laplace transform obtained  

in Theorem 1 enabled us to obtain a new closed-form solution (15) of the time- 

-fractional diffusion-wave equation (8)-(10) in the form an infinite series of the 

three-parameter Mittag-Leffler functions. In Theorem 2, we have obtained the sum 

of an infinite series of Mittag-Leffler functions with three parameters in terms of  

the Wright function. The results obtained in Theorem 2 enabled us to get the exact 

solution (16) of the time-fractional diffusion-wave equation (8)-(10) when � = 2  

and � = �3.  
References  

[1] Ansari, A., & Sheikhani, A.R. (2014). New identities for the Wright and the Mittag-Leffler  

functions using the Laplace transform. Asian-European Journal of Mathematics, 7(3), 1450038. 

[2] Elhadedy, H., Latif, M.S.A., Nour, H.M., & Kader, A.H.A. (2022). Exact solution for heat  

conduction inside a sphere with heat absorption using the regularized Hilfer-Prabhakar derivative. 

Journal of Applied Mathematics and Computational Mechanics, 21(2), 27-37. 

[3] Garra, R., Gorenflo, R., Polito, F., & Tomovski, Z. (2014). Hilfer Prabhakar derivatives and some 

applications. Applied Mathematics and Computation, 242, 276-589. 

[4] Bokhari, A., Belgacem, R., Kumar, S., Baleanu, D., & Djilali, S. (2022). Projectile motion using 

three parameter Mittag-Leffler function calculus. Mathematics and Computers in Simulation,  

195, 22-30.  

[5] Kilbas, A.A., Srivastava, H.M., & Trujillo, J.J. (2006). Theory and Applications of Fractional 

Differential Equations. Elsevier. 

[6] Mainardi, F., Mura, A., & Pagnini, G. (2010). The M-Wright function in time-fractional diffusion 

processes: A tutorial survey. International Journal of Differential Equations, 104505. 

[7] Srivastava, H.M., & Choi, J. (2011). Zeta and q-Zeta Functions and Associated Series and  

Integrals. Elsevier. 

[8] Sandev, T., & Tomovski, Z. (2019). Fractional Equations and Models. Theory and Applications. 

Cham: Springer Nature Switzerland AG. 

[9] Korotkov, N.E., & Korotkov, A.N. (2020). Integrals Related to the Error Function. Chapman and 

Hall/CRC.  

[10] Povstenko, Y. (2015). Linear Fractional Diffusion-wave Equation for Scientists and Engineers. 

Springer International Publishing. 

[11] Pskhu, A., & Rekhviashvili, S. (2020). Fractional diffusion-wave equation with application in 

electrodynamics. Mathematics, 8(11), 2086. 

[12] Maimardi, F. (2022). Fractional Calculus and Waves in Linear Viscoelasticity, 2nd Edition. 

World Scientific. 

[13] Chen, W., Sun, H., & Li, X. (2022). Fractional Derivative Modeling in Mechanics and Engineering. 

Springer Nature. 



 Inverse Laplace transform for a new class of functions and its application to time-fractional diffusion-wave … 65 

Appendix A 

The Hilfer-Prabhakar derivative at 0 < � ≤ 1 is given by [3] 

     yz�,/,�{�,� s�6� = ��,('�,/,�{'� s��6�
= = �6 − 5�'���,('�'� �)�6 − 5���s��5�?5>

�= s��6� ∗ 6'���,('�'� �)6��. (A1)

With the help of Eq. (10), the Laplace transform of the operator (A1) is obtained  

as [3] 

0 � yz�,/,�{�,� s�6�� = $�'(�1 − )$'���[$ 0�s�6�� − s�0�\. (A2)

The Hilfer-Prabhakar derivative at 0 < � ≤ 2, is given by [3] 

     yz�,/,�{�,� s�6� = ��,3'�,/,�{'� s���6�
= = �6 − 5�('���,3'�'� �)�6 − 5���s���5�?5>

�= s���6� ∗ 6('���,3'�'� �)6��. (A3)

With the help of Eq. (10), the Laplace transform of the operator (A3) is obtained as 

0 � yz�,/,�{�,� s�6�� = $�'3�1 − )$'����$3 0�s�6�� − $s�0� − s��0��. (A4)

The Fourier transform of a function ��}� is defined by [5] 

ℱ���}�� = ���b� = = ��}��LA~?}�
'� , (A5)

and the inverse Fourier transform is given by  

ℱ'(����b�� = ��}� = 12; = ���b��'LA~?b�
'� . (A6)

 


