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Abstract. The algorithm for finding the probability of failure of stochastically defective 

plates in a flat stress field based on a certain idea about structural rearrangement due to 

technological deformation processing (extraction) is considered. The plate is isotropic  

before technological processing, in which defects-cracks, which do not interact with each 

other, are evenly distributed. Cracks are characterized by the length and angle of orientation 

relative to the extraction direction, which are statistically independent random variables. 

The relationship for the failure loading integral probability distribution function of plates 

with extraction was obtained. The probability of plate failure with strength anisotropy was 

investigated. 
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1. Introduction 

Some types of technological deformation treatment of materials lead to changes 

in the geometric parameters of defects and their structure. Although the level of 

physical and chemical connections between the microparticles of the material  

remains practically unchanged, the macroscopic strength and probability of failure 

of the bodies after such treatments can change significantly. For example, materials 

subjected to directional plastic deformation during processing acquire properties of 

strength anisotropy [1, 2], which can be explained by the appearance of a certain 

texture (predominant orientation) of defects. In the article [3], a study of the scale 

effect of the structural materials failure is carried out. The paper [4] proposes  

an algorithm of probabilistic fracture mechanics for assessing the reliability of 

structural elements with crack-type defects, which takes into account uncertainties 

in structural analysis. A solution to the problem of brittle failure mechanics was  

obtained [5], considering the random distribution of microcracks in terms of shape, 

spatial arrangement, and orientation. The paper [6] describes an integrated model 
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for analyzing the reliability of a continuous structure. The work [7] considers the 

criterion of quasi-brittle fracture, which is based on local values related to the energy 

release rate. A statistical approach to assessing the strength of materials at brittle 

fracture, taking into account the scale effect, is considered in [8]. The process of 

assessing the probability of failure of composite structural materials under the con-

ditions of working loading is complicated by non-homogeneous mechanical prop-

erties that arise in the process of their manufacture [9]. The analytical model for 

calculating the probability of failure of composite material samples is considered in 

[10]. In the article [11], a probabilistic approach is proposed for assessing the relia-

bility of unidirectional carbon fiber-reinforced composite materials under biaxial 

loading. A method of researching the tensile strength of brittle materials is pro-

posed in [12]. A method of calculating the probability of failure under mechanical 

loading conditions has been developed [13]. In article [14], an assessment of the 

welded steel joints probability of failure containing surface defects was carried out. 

In this article, based on a certain idea about the structural rearrangement due to 

the technological deformation treatment (extraction) of stochastically defective plates, 

the probability of failure is determined, and the reliance of the material strength  

anisotropy acquired during treatment on the extraction coefficient and the number 

of defects was investigated. 

2. Formulation of the problem 

Let’s investigate the structural anisotropy of the material, which occurs during 

technological extraction. Consider a plate that is isotropic before technological 

processing, in which defects-cracks that do not interact with each other are evenly 

distributed. Cracks are characterized by the length *2l  and angle of orientation *  

relative to the extraction direction. The indicated parameters are statistically inde-

pendent random variables. Assuming the isotropic nature of the plate material,  

the probability distribution density will be set by the uniform law [15] 
(1)

*( ) 1f    

 ( 2; 2) .     

In work [15], the probability distribution density of *l  was chosen as a linearly 

decreasing distribution  (2)
* * * *( ) 2 1f l l c c  * *(0 ),l c  *c  is a finite structural 

characteristic. We choose the probability distribution density of *l  in the form of  

a generalized β-distribution  (2)
* * * *( ) ( 1) 1 ,

r
f l r l c c   0r   [16]. The integral 

distribution function is written as   1(2)
* * *( ) 1 1 .

r
F l l c


    The parameter r  

reflects the following property: the longer the defect, the lower the probability of 

its occurrence in the material. Experimental data [17, 18] also indicate the nature  

of the density of the probability distribution of crack sizes. 

Then, the density of the compatible probability distribution of *  and *l  

  (1)
* * * * *( , ) ( 1) 1 ( ).

r
f l r l c c     (1) 
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The material of the plate in a softened state is subjected to technological defor-

mation treatment (extraction) with a coefficient m  1, which shows how many 

times the size of the material elements increases in the direction of extraction, and 

then hardens (becomes brittle). The values of extraction coefficients for certain  

lamellar materials are chosen according to the reference [19]. 

We assume that the cracks during extraction behave like flexible tensile threads 

and the material is incompressible. This means that when the length of a fixed ele-

ment of an object increases by a factor of m, and its width and thickness decrease 

by a factor of .m  Correspondingly, there are changes in the structure of the mate- 

rial cracking, that is, the orientation and length of the cracks change. 

For geometric reasons, we establish a relationship between the parameters of the 

cracks before and after extraction: 

 1 2 2 2
* * *sin cos ;l l m m    (2) 

  3/2
*arctg tg .m   (3) 

From relations (2)-(3), we obtain the following inverse relationship: 

 1 3 2 2
* sin cos ;l lm m    (4) 

  3/2
* arctg tg .m   (5) 

3. Probability distribution densities of the defect’s geometric random 

parameters after technological deformation treatment 

Let’s find the probability distribution densities of α and l (0 ),l c   that are 

changed as a result of technological deformation treatment. The relationship  

between structural parameters c and *c  according to expression (2), establishes  

the expression 

1 2 2 2
* * *sin cos .с с m m    

According to [20] 

 
(2) (1) * * * *

* *( , ) ( , ) .
l l

f l f l
l l

    
      

 
 

 
 (6) 

By substituting expressions (1), (4), and (5) into formula (6), we obtain 

 
(2) 1

1 3 2 2

( 1) ( , )
( , ) 1 ( , ),

2 2, 0 ( , ), ( , ) sin cos .

r
r m l m

f l m
c mc

l cm m m m





    
 

      

 
  


        

 (7) 
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The indicated parameter change interval l ensures the condition of non-negativ-

ity of the density of the compatible probability distribution (7). With the value of 

the parameter r = 1, we have the partial case [15]. 

Using (7), we obtain the probability distribution densities after extraction 

 

1( , )

(1)

0

( 1) ( , )
( ) 1 .

( , )

cm m r
r m l m

f dl
c m mc

 
 


  



    
   (8) 

 

/2

(2) 1

0

2( 1) ( , )
( ) 1 ( , ) .

r
r m l m

f l m d
c mc

  
  


    

   (9) 

In particular r = 1, from formula (8), we analytically obtain the expression [21] 

 

1 ( , ) 3/2
(1)

3 2 2

0

2 ( , )
( ) 1 .

( , ) ( sin cos )

cm m
m l m m

f dl
c m mc m

 
 


     



        (10) 

Distributions (7)-(10) explicitly contain the coefficient of technological extrac-

tion m. With its help, you can control the structural, and therefore the strength 

properties of the material. According to (10), the most probable value of the orien- 

tation of the cracks ( ) 0,Mo   i.e., the greatest probability of placement of cracks 

is in the direction of the technological extraction. In the extraction direction, the 

presence of the longest defects is more likely. With the increase of the extraction, 

this process of structural reconstruction intensifies. 

4. The failure loading probability distribution function 

Let the plate of thickness H and area S be subjected to biaxial tension, compres-

sion, or tension-compression in two mutually perpendicular directions by a uniform 

loading P and .Q P  For plates with a directional structure of defects, in contrast 

to isotropic materials [22], the angle of the action direction of applied loading with 

the direction of calculation of defect orientation, which coincides with the direction 

of technological extraction of the material, is important. The direction of the load-

ing P coincides with the direction of the preliminary extraction. 

The failure loading probability distribution function of a plate element with one 

crack is recorded according to the formula to determine the probability distribution 

of the function from random variables [15] 

 
1/2

(2)
1 min

( ) ( , )

( , ) ( , ) , ,

IcK l P

F P f l d dl P P

   

  
 

     (11) 

where the function ( , )    is represented by various analytical expressions [23], 

based on the criterion for calculating the ultimate stresses from the condition of  
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2 2 2 1/2

1

(sin cos ) , 0,
( , )

2 (1 )sin 2 | | , 0,

n

n

   
  

  





  
 

 
 (12) 

where n  are stresses normal to the crack line. 

The values minP  and maxP  are random variables and are determined from [23] 

 1/2| | ( ) ( , );IcP K l     (13) 

 1/2
min max( ) ( ) min ( , ), ( ) ,IcP K c P         (14) 

where IcK  is the critical stress intensity factor that describes the material’s resist- 

ance to crack growth, ( , )    is a known function, the form of which depends on 

the type of defect, the range of values of α and η, the approach to solving the prob-

lem of the limited state of the body, etc. The expressions (14) are obtained from 

(13) as the minimum and maximum value of the failure loading according to two 

variables α and l. 

In expression (11), taking into account (12)-(14), the integration is carried out 

over those possible variables of α and l for which 1/2( ) ( , ) .IcK l P      

Substitute expression (7) in (11): 

 
1/2

1
1

( ) ( , )

( 1) ( , )
( , ) 1 ( , ) .

Ic

r

K l P

r m l m
F P m d dl

c mc
   

 
   

 





    
   (15) 

We represent the double integral in formula (15) through the repeated integral 

 
2 2

2

( , )

1
1

( , )

( 1) ( , )
( , ) 1 ( , ) .

Ic

cm

m r

K

P

r m l m
F P m dl d

c mc





 
      
  
  

 
 

   



 
   


 (16) 

In formula (16), Ω is the area of change of the parameter α from 2  to 2,  

excludes areas in which 2 2 1 2 1( ) ( , ) ( , ).IcK P cm m        

From expressions (7) and (13), we obtain 

 2 2 1 2 10 ( ) ( , ) ( , ).IcK P cm m         (17) 

From formula (17), by notations (7) and (12), we write down the expression 

    1/4 1/`2
3 2 2 2 2 2sin cos (sin cos ) .IcP K m cm


         (18) 



Investigation of the stochastically defective plates with strength anisotropy limit state 47

Formula (18) makes it possible to determine the intervals of change of the failure 

loading under different types of stress states and to calculate certain critical values 

of the crack orientation angle. 

We find 1( , )F P  ( 0, 0).P Q   From relation (18), we get 

 1/4 1/2 1 1/2( ) ( ) .Ic IcK m c P K cm       (19) 

From the condition 1/4 1/2 1 1/2( ) ( ) :Ic IcK m c K cm      3/40 .m   Figure 1a 

schematically depicts the region of integration in formula (16) for the loading 

change interval P (19). The curve   1
2 2 2 2 2(sin cos )Icl K P


      is marked in 

olive color, and the curve   1/2
3 2 2sin cosl cm m


    is orange. 

 

   
a b 

   
c d 

   
e f 

Fig. 1. Region of integration for the function 1( , )F P   under biaxial tension ( 0, 0)P Q   

The point of intersection of the marked curves is determined from the system 

 

2 1 2 2 2 2 1

3 2 2 1/2

(sin cos ) ;

( sin cos ) .

Icl K P

l cm m

  



  


 

   

 
 (20) 
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From (20), we obtain the following values: 

   

    

4 3 21
2 2 2 2 2 2 4

1,2 2

2
4 3 2 2 3 2 2 2 4

( 1)
arcsin 2 |1 | 2 1 ;

1 4 1 1 .

Ic Ic

Ic

K m K T
cmP m c P

T K m m m c P

      
 
 

    

   


  

 

  (21) 

In expression (21), the sign "+" corresponds to the 1,  the sign "–" to the 2 .  

According to expression (19), consider the loading change interval 

   1/4
1 1/2 3 1/2 1/2 3 2 2( ) ( 1) (2 ) ( 1)(1 ) .Ic IcK cm P K m cm m

            (22) 

The loading change limit   1/4
3 1/2 1/2 3 2 2( 1) (2 ) ( 1)(1 )IcP K m cm m

       is 

obtained from the condition T = 0. 

From   1/4
1 1/2 3 1/2 1/2 3 2 2( ) ( 1) (2 ) ( 1)(1 ) ,Ic IcK cm K m cm m

           we get 

the parameter η change interval:  1/2
3 3/42 (1 ) .m m    The region of integration 

in formula (16) for the loading change interval P (22) is shown in Figure 1b. 

For 

3 3/42 (1 ) ,m m     1/4
3 1/2 1/2 3 2 2( 1) (2 ) ( 1)(1 ) ,IcK m cm m P

        

or 30 2 (1 ),m    

1 1/2( )IcK cm P       the region of integration is pre-

sented in Figure 1c. 

For   1/4
3/4 1/4 1/2 3 1/2 1/2 3 2 21, ( ) ( 1) (2 ) ( 1)(1 ) ,Ic Icm K m c P K m cm m

              

the region of integration is shown in Figure 1d. 

The region of integration in Figure 1b is shown for 3/4 3 3(1 ) (2 ),m m m     

  1/4
1/4 1/2 3 1/2 1/2 3 2 2( ) ( 1) (2 ) ( 1)(1 ) .Ic IcK m c P K m cm m

          The region  

of integration is presented in Figure 1c when 
3/4 3 3(1 ) (2 ),m m m     

  1/4
3 1/2 1/2 3 2 2( 1) (2 ) ( 1)(1 ) ,IcK m cm m P

         or 
3 3(1 ) (2 ) 1,m m    

1/4 1/2( ) .IcK m c P     

Let’s consider the case 1 .    When 
1 1/2 1/4 1/2( ) ( )Ic IcK cm P K m c       

the region of integration is in Figure 1e, for 1/4 1/2( )IcK m c P     in Figure 1f. 

We find 1( , )F P  ( 0, 0).P Q   The function ( , )    (12) 

 
 

 

1

1/2
2 2 2

2 (1 )sin 2 | | , 0 | | arctg | | ;
( , )

sin cos , arctg | | | | / 2.





    
  

   
  

     
 (23) 
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Let’s consider the case  1 0 | | .Q P     We take into account expression 

(23). When 1 1/2 3 1/4 1/4 1/4 1/2| | ( ) (1 ) (1 ) ( )Ic IcK cm m P K m c            and 

  1/3
3 1/3 2(1 ) (1 ) ,m m


      the region of integration is in Figure 2a. In this  

figure and the following ones, the curve   1
2 2 2 2

4 (1 ) sin 2Icl K P


     is marked 

in a sea green color. The left limit of the loading change interval P is the solution 

of the equation    1 1/2
2 2 2 2 3 2 2

3 3 34 (1 )sin 2 sin cos .IcK P mc k
 

        

The inequality    1/3 1/3
3 21 (1 )m m


      is obtained from min max .P P  

The coordinate 4  (Fig. 2a) is the solution of the equation 

  
4 3

4 2 3 3

2 2 4 2 4

8 (1 )cos2
cos 2 2cos 2 (1 )cos2 1 1 0,

(1 )

IcK m
m m

m c P


      




  

 
 (24) 

and satisfies the condition 4 30 .    

For  1 0 | | ,Q P     at 1/4 1/2( )IcK m c P     and 

   1/3 1/3
3 21 (1 )m m


      the region of integration is shown in Figure 2b. 

Consider the case 1 0,       1/3 1/3
3 2

1 (1 ) .m m


      When 

 1/4
1/4 1/2 1 1/2 3 1/4

( ) | | ( ) 1 (1 )Ic IcK m c P K cm m
            the region of integra-

tion is in Figure 2c. For  1/4
1 1/2 32 (1 ) ( ) 0.5(1 )IcK cm m P        in Figure 2b. 

Consider the loading ratio interval  1 | | .Q P     Then 3 4   and  

the sea green curve takes a minimum value at the point 4.   We equate  

the functions describing the curves   1/2
3 2 2sin cosl cm m


    and 

  1
2 2 2 2

4 (1 ) sin 2 ,Icl K P


     at 4   

    1/2 1
3 2 2 22 1 4 (1 ) .Iccm m K P

 
     (25) 

From the expression (25), we get  1/4
1 1/2 32 (1 ) ( ) 0.5(1 ) .IcP K cm m      

For    1/4 1/4
1 1/2 3 1 1/2 3 1/42 (1 ) ( ) 0.5(1 ) | | ( ) 1 (1 )Ic IcK cm m P K cm m                

we get the region of integration in Figure 2d, where 3 5,   are solutions of equa-

tion (24), respectively, on the intervals (0; 4)  and 3( 4; ).   

For  1/4
1 1/2 3 1/4 1/4 1/2| | ( ) 1 (1 ) ( ) ,Ic IcK cm m P K m c            we get the 

region of integration in Figure 2e, for 1/4 1/2( )IcK m c P     in Figure 2f. 
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a b 

   
c d 

   
e f 

Fig. 2. Region of integration for the function 1( , )F P   under tension-compression ( 0, 0)P Q   

Consider the case of compression-tension of plates ( 0, 0).P Q   Then  

 
 

2 2 2 1/2

1

(sin cos ) , 0 | | arctg | |;
( , )

2 (1 )sin 2 | | , arctg | | | | 2.





   
 

  

    
  

    
 (26) 

Consider the loading ratio interval  31 | |, 4 .Q P          

We take into account expression (26). When 

 1/4
1 1/2 1 1/2 3 1/4| | ( ) | | ( ) 1 (1 ) ,Ic IcK cm P K cm m               the region  

of integration is shown in Figure 3a, for 

 1/4
1 1/2 3 1/4| | ( ) 1 (1 )IcK cm m P            in Figure 3b, where 5  

is the solution of equation (25) on the interval 3( ; 2).   

Consider the conditions  31 0 | |, 4Q P        and 

3| | (1 ) (1 ).m      The region of integration is shown in Figure 3c for 

   1/4 1/4
1 1/2 3 1 1/2 3 1/42 (1 ) ( ) 0.5(1 ) | | ( ) 1 (1 ) ,Ic IcK cm m P K cm m               

where 4 5,   are the solutions of equation (26), respectively, on the intervals 

3( ; 4)   and ( 4; 2).   We get the region of integration in Figure 3d for 

 1/4
1 1/2 3 1/4 1 1/2| | ( ) 1 (1 ) | | ( ) .Ic IcK cm m P K cm               Here 5  is the 

solution of equation (26) on the interval ( 4; 2).   
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a b 

   
c d 

   
e f 

 
g 

Fig. 3. Region of integration for the function 1( , )F P   under compression-tension ( 0, 0)P Q   

When 
1 1/2| | ( ) ,IcK cm P        we get the region of integration in Figure 3e. 

Consider the conditions 1 0,    3| | (1 ) (1 )m      and 

   1
4 3 48 1 1 1.m


     According to the last two inequalities, we will  

consider the intervals of the change in the value | | .P  When 

 1/4
1 1/2 3 1 1/22 (1 ) ( ) 0.5(1 ) | | ( )Ic IcK cm m P K cm            the region  

of integration is presented in Figure 3c, for 

 1/4
1 1/2 1 1/2 3 1/4| | ( ) | | ( ) 1 (1 )Ic IcK cm P K cm m               in Figure 3f.  

The solutions of equation (26) 4 5,   on the intervals 3( ; 4)   and ( 4; 2)   

can be found here, respectively. We get the region of integration in Figure 3e  

when  1/4
1 1/2 3 1/4| | ( ) 1 (1 ) .IcK cm m P            
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Consider the case 1 0,       1
4 3 48 1 1 1.m


     When 

 1/4
1 1/2 1 1/2 3| | ( ) 2 (1 ) ( ) 0.5(1 ) ,Ic IcK cm P K cm m            we get  

the region of integration in Figure 3g, for 

   1/4 1/4
1 1/2 3 1 1/2 3 1/42 (1 ) ( ) 0.5(1 ) | | ( ) 1 (1 )Ic IcK cm m P K cm m               

in Figure 3f, when  1/4
1 1/2 3 1/4| | ( ) 1 (1 )IcK cm m P            in Figure 3b. 

After writing down the expressions of the failure loading probability distribu-

tion function  1 | |,F P   according to the obtained areas of integration and substi-

tuting the value of the extraction coefficient m = 1, we will get the results [15]. 

5. Probability of failure of plates with extraction 

The probability of plate failure with N cracks [15] 

  1( , ) 1 1 ( , ) .
N

f NP F P F P      (27) 

Based on the obtained expressions, according to (27), it is possible to calculate 

the probability of failure of a plate with N cracks under different types of stress 

states, considering the material’s technological extraction. 

In particular, under uniaxial tension  0   

 
2

1

2

( , )/2

1

sin

( 1) ( , )
1 1 1 ( , ) .

Ic

N
cm

m r

f

K

P

r m l m
P m dl d

c mc



  
             
    

 
 



 

 
  


 (28) 

Under equibiaxial tension  1   

 
2

2

2

( , )

1

0

( 1) ( , )
1 1 1 ( , ) .

Ic

N
cm

m r

f

K

P

r m l m
P m dl d

c mc



  
             
    

 
  



 
  


 (29) 

After entering the dimensionless loading Icp P c K  and the value of the 

cracking parameter r = 2, in Figure 4, under expressions (28) and (29), diagrams of 

the dependence of the probability of failure on the applied loading are presented. 
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Fig. 4. Probability of failure for some loading cases (solid lines for N = 100,  

dashed for N = 20). Purple lines for the plate without extraction, 

green lines for the plate after extraction (m = 1.4) 

 

Fig. 5. Probability of failure for different material structural inhomogeneity  

under different types of stress states 

Figure 5 shows the effect on the probability of failure of the structural inhomo-

geneity of the material and the type of stress state with different numbers of defects 

in the plate after technological extraction. The designations are similar to Figure 4. 

6. Conclusions 

According to the graphs in Figure 4, it can be concluded that the previous  

technological extraction of the plate material led to a decrease in the probability  

of failure Pf  during tension in the direction of the extraction (η = 0) and an increase 

in equibiaxial tension (η = 1). Conversely, the failure loading corresponding to  

the specified probability of failure Pf  increases due to processing during tension  
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in the extraction direction and decreases with equibiaxial tension. As the number of 

cracks in the plate increases, the failure loading corresponding to the fixed proba-

bility of failure decreases, and the probability of failure increases. 

Under a fixed-loading P, with an increase in the parameter r (the structure of the 

plate material becomes homogeneous), we get a pattern of decreasing probability 

of failure (Fig. 5). This regularity depends on the stress state type. Similar regulari-

ties were observed in the article [24]. 

The conducted research makes it possible to estimate and predict the strength and 

strength anisotropy of stochastically defective structural elements under a complex 

stress state, depending on the coefficient of technological extraction, considering 

the number of defects. 
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