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Abstract. This paper introduces a simplified approach to analyze the buckling and static 

bending of advanced composite beams, including functionally graded materials (FGMs), 

with various porosity distributions. This method uses a simple integral quasi-3D approach 

with a higher-order shear deformation theory, which offers several advantages: reduced com-

plexity by requiring fewer unknowns and governing equations compared to other methods; 

improved accuracy by incorporating the effect of stretching across the beam’s thickness, 

leading to more accurate results; finally, accurate shear representation by satisfying the  

zero-traction boundary conditions on the beam’s surfaces without needing a shear correction 

factor; and it captures the parabolic distribution of the transverse shear strain and stress across 

the thickness. The virtual work principle is used to derive the governing equations, and the 

Navier solution is employed to find analytical solutions for buckling and static bending of 

various boundary conditions for FGM porous beams. The proposed method agrees well with 

the literature on FGMs and other advanced composite beams. Finally, numerical results 

showcase how material distribution (including power-law FGMs), geometry, and porosity 

affect the beam’s deflections, stresses, and critical buckling load. 
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1. Introduction 

Functionally graded materials (FGMs) are novel engineered materials with  

properties continuously varying throughout their structure. This gradual change in 
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composition and microstructure distinguishes them from conventional composite 

materials, which typically have distinct layers with abrupt property changes. FGMs 

can be designed to meet the specific requirements of diverse applications, from  

high-temperature components in aerospace engineering to wear-resistant surfaces  

in tribological applications [1].  

The unique properties of functionally graded materials (FGMs) have attracted 

significant research interest in their bending behavior under various loading condi-

tions. This includes static bending, free vibration analysis, and buckling behavior of 

FGM beams, plates, and shells [2, 3]. Literature suggests that FGM plate analysis 

can be approached through various theoretical frameworks, including classical plate 

theory (CPT) [4], first-order shear deformation theory (FSDT) [5, 6], and higher-order 

shear deformation theory (HSDT) [7, 8]. 

According to the literature, certain research using a higher shear deformation 

plate theory HSDT using integral terms to determine the behaviour of plates in FGM 

has been published. In [9], the authors proposed a new and simple Higher-Order 

Shear Deformation Theory (HSDT) to analyze the thermal stability of functionally 

graded (FG) sandwich plates, this analysis aims to determine the critical temperature 

at which the FG sandwich plate buckles due to thermal loads. Messaoudi et al. [10] 

used a simplified approach to the problem by utilizing a new displacement field with 

fewer unknowns than existing quasi-3D shear deformation theories. Chitour et al. [11] 

proposed a theoretical framework for deriving the equilibrium equations governing 

the behavior of functionally graded (FG) sandwich beams. This framework allowed 

them to obtain analytical solutions for bending problems in these beams. Several 

research works on FGM beams using different types of materials, loading, and 

boundary conditions have recently been published [12-16]. 

Various publications have explored the effect of porosity on the behavior of FGM 

beams, Ghazwani et al. [17] studied the nonlinear forced vibrations of sandwich 

beams made from porous functionally graded materials (FGMs) with a viscoelastic 

core layer. Their analysis employs higher-order Zig-Zag theories for normal and shear 

deformations within the viscoelastic core. The study examines how these beams  

vibrate under external forces, considering the FGM faces’ porosity and the core  

layer’s viscoelastic nature. The higher-order Zig-Zag theory incorporates the effects 

of both bending and shear deformations within the core material [18-20]. 

This work aims to develop an original 2D and quasi-3D HSDT shear deformation 

theory, including integral terms, to study the static bending and buckling behavior of 

FG beams having porosities. The proposed beam has four types of porous distribu-

tion and is investigated under static bending and buckling with varied boundary con-

ditions. To analyze the beam’s behavior, the governing equations are derived using 

the principle of virtual work and then solved using the Navier technique. To validate 

the accuracy and effectiveness of this new theory, the calculated results are compared 

with those obtained from other established theories. Additionally, the paper presents 

and discusses a comprehensive set of parametric studies to explore the influence  

of various parameters on the system’s behavior. 
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2. Imperfect FGM beams material properties 

The FG beam varied boundary conditions of length (l), thickness (h), and width 

(b) is exposed where the material properties of a P-FGM composition vary along  

z direction with the FG index k (Fig. 1): 
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P(z) is the variation in mechanical properties across the thickness, and V(z) is the 

volume fraction of the ceramic. 

Four porosity models are used (Fig. 1b), [18]. 

 

 

Fig. 1. Geometry and coordinate system of the imperfect FG beam 

Porous material properties for various porosity patterns and porosity coefficient 

(Ω) are given by: 
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3. Theoretical formulations of the FG beam 

3.1. Kinematics and strains 

The displacement field of the conventional HSDT is given by: 

 
0

0

0

( , ) ( ) ( ) ( )

( , ) ( ) ( ) ( )

a

w
u x z u x z k f z x dx

x

w x z w x n g z x


   


  

  (3) 

where 0 0, ,u w   are the three unknown displacements of the mid-plane of the beam. 

By a Navier-type method, the integrals used in the above equations can be given: 

 2

2

1
, , anda

m
dx A A k

x l

 
        
   (4) 

Where the coefficient A  is expressed according to the type of solution used,  

in this case via Navier. 

( )f z  represents the shape function is represented as: 
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n is a real number given as n = 0 for 2D and n = 1 for quasi-3D. 

The non-zero linear strain components obtained from Eqs. (3) and (4) are: 
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The linear elastic constitutive equations at a point are: 
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The ijC  , 1, 3, 5i j   expressions in terms of engineering constants: 

 Case of 2D  0 ,z   then ijC  are: 
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 Case of Quasi-3D  0 ,z   then ijC  are: 
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3.2. Governing equations  

Using the principle of virtual work can be expressed as 
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Where A is the surface, and stress resultants N, M, Q and S are the force and  

moment components represented in the following forms 

/2 /2 /2

/2 /2 /2

1
( )

( ) , ( ) , ( )
( )

( )

x h h h
xzb

x x z z xzs
h h hxzs

x

N
S g z

M z dz N g z dz dz
f zQ

f zM
  

                                 

    (10) 

From Eq. (6) into Eq. (9), the following governing equations are obtained: 
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Using Eqs. (6), (7) and (8b), the stress resultants are obtained as: 
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Substituting Eqs. (6), (12), (13) into Eq. (11), the stability equations are defined by: 
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3.3. Exact solution for various boundary conditions of FG beam 

The exact solution of Eqs. (14) for the FGM beams under various boundary  

conditions can be constructed by using the admissible functions listed in Table 1. 

Table 1. Admissible functions Xm, Yn 

Boundary conditions 
Admissible functions Xm and Yn 

Xm Yn 

SS 

CC 

CF 

sin(αx) 

sin(αx) cos(αx) 

cos2(αx)(sin2(αx)+1) 

sin(λx) 

sin(λx) sin(λx) 

sin2(λx) 
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With m l    and n b    
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where Um , Wm and θm are the unknown displacement coefficients. 

By replacing the extensions of Um , Wm and θm of equations (14) in the equations 

of equilibrium (12), the analytical solutions can be obtained from 
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The transverse load q(x) is also expanded in a Fourier series as 
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The Fourier coefficient (qm) for sinusoidal and uniform loads are as follows 
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For the bending problem, put N0 = 0; for the buckling problem, put q = 0. 

 Bending analysis 

     K f   (20) 

 Buckling analysis 

        0 0K N N    (21) 

Where [K] is the stiffness matrix, [N] is the geometric matrix due to the axial forces, 

{ f } is the force vector, {Δ} is the vector of unknowns, and N0 is the axial force. 



 Buckling and bending analysis of porous FG beam using a simple integral quasi-3D theory 37 

4. Numerical results and discussion 

4.1. Convergence and validation study 

In this paper, the properties of the materials used are: for ceramic (Pc: Alumina, 
Al2O3): Ec = 380 GPa; υc = 0.3, for metal (Pm: Aluminum, Al): Em = 70 GPa; υm = 0.3. 
For simplicity, displacements, stresses and critical buckling loads are presented in 
non-dimensional form: 
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Table 2 presents the maximum nondimensionalized displacements and stresses 
of the beam for various power law index values and a length-to-thickness (L/h) ratio 
equal to 5. To facilitate comparison, we generated numerical results for a supported 
functionally graded (FG) beam using different theories. It is observed from Table 2 
that the transverse displacement reaches its maximum value when k = ∞, while it is 
minimized when k = 0. This behavior is attributed to the increased flexibility of FG 
beams with higher power law indices. 

Table 2. Non-dimensional displacements and stresses of functionally graded beams (L = 5h) 

k Theory Model 
Uniform load 

u  w  x  
zx  

0 

ceramic 

Present 2D HSDT 0.9398 3.1653 3.8020 0.7333 

Present 3D HSDT 0.9080 2.8951 3.4120 0.6599 

Sayyad & Ghugal [20] RSDT 0.9420 3.1635 3.8084 0.7764 

Reddy [21] HSDT 0.9397 3.1654 3.8028 0.7305 

Timoshenko [22] FSDT 0.9210 3.1057 3.7501 0.4922 

Bernoulli-Euler [23] CBT 0.9210 2.8783 3.7501 – 

5 

Present 2D HSDT 3.7101 9.8280 8.1100 0.7398 

Present 3D HSDT 3,4893 8,6286 7,1326 0.7000 

Sayyad & Ghugal [20] RSDT 3.7179 9.8414 8.1331 0.7654 

Reddy [21] HSDT 3.7098 9.8281 8.1127 0.8114 

Timoshenko [22] FSDT 3.6496 9.4987 7.9430 1.5373 

Bernoulli-Euler [23] CBT 3.6496 8.7508 7.9430  – 

10 

Present 2D HSDT 3.8861 10.938 9.7128 0.6715 

Present 3D HSDT 3.6709 9.5508 8.5406 0.6353 

Sayyad & Ghugal [20] RSDT 3.9858 10.94 9.7345 0.6947 

Reddy [21] HSDT 3.8861 10.938 9.7141 0.6448 

Timoshenko [22] FSDT 3.8096 10.534 9.5231 1.9050 

Bernoulli-Euler [23] CBT 3.8096 9.6072 9.5231  – 

  

metal 

Present 2D HSDT 5.1018 17.183 3.8020 0.7482 

Present 3D HSDT 4,9290 15.716 3.4120 0.7079 

Sayyad & Ghugal [20] RSDT 5.1133 17.173 3.8084 0.7741 

Reddy [21] HSDT 5.1021 17.183 3.8028 0.7305 

Timoshenko [22] FSDT 5.0000 15.912 3.7501 0.4922 

Bernoulli-Euler [23] CBT 5.0000 15.625 3.7501 – 
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The analysis of Table 3 indicates that the findings from this theory align closely 

with those from other theories. The clamped (C-C) beams demonstrate the highest 

buckling loads, unlike the cantilever (C-F) beams, which show the lowest. Addition-

ally, an increase in the power law index is associated with a decrease in normalized 

buckling loads, confirming the current theory’s capability to accurately determine 

the critical buckling loads of P-FGM beams under varying boundary conditions. 

Table 3. Comparison of the normalized buckling loads of functionally graded beams 

with different boundary conditions (L/h = 5) 

BC’s Theory 
k 

0 1 2 5 10 ∞ 

 Present 2D 48.5957 24.5837 19.0709 15.6436 14.0512 8.95187 

SS 

Present 3D 49.6392 25.372 19.8365 16.4111 14.6969 9.14408 

Sayyad & Ghugal [20] 48.626 24.5966 19.0738 16.622 14.0485 8.95730 

Kahya & Turan [24] 48.5907 24.5815 19.1617 15.9417 14.3445 8.95100 

Nguyen et al. [25] 48.8406 24.6894 19.1577 15.7355 14.1448 – 

CC 

Present 2D 152.148 79.4832 60.8785 46.8871 40.9883 28.0272 

Present 3D 171.629 89.382 69.6172 55.9988 49.4489 31.6159 

Sayyad & Ghugal [20] 154.484 79.739 61.9488 49.5646 42.7493 27.9160 

Kahya & Turan [24] 151.943 79.3903 61.7449 49.5828 43.5014 27.9890 

Nguyen et al. [25] 154.561 80.5940 61.7666 47.7174 41.7885 – 

CF 

Present 2D 13.0542 6.5362 5.0958 4.2906 3.8527 2.3807 

Present 3D 14.2703 6.8319 5.2547 4.4028 3.9351 2.3945 

Sayyad & Ghugal [20] 13.0719 6.557 5.0986 4.2931 3.8512 2.3819 

Kahya & Turan [24] 13.0594 6.5352 5.0981 4.2926 3.897 2.4057 

Nguyen et al. [25] 13.0771 6.5427 5.0977 4.2772 3.882 – 

4.2. Parametric study and discussions – porosity effect 

Figure 2 indicates the effect of the side-to-thickness ratio l/h and the porosity 

models on the central deflections w of FG porous beams with volume fraction  

k = 2, and porosity coefficient Ω is chosen as 0.2. The central deflections (w)  

decrease with an increasing in side-to-thickness ratio for the various porous models. 

Variation of the transverse shear stress �xz and the axial stress �xx through-the-

thickness FG beams for various porous models with volume fraction k = 2 and the 

side-to-thickness ratio l/h = 10 are shown in Figure 3. Figure 3b predicts a parabolic 

distribution of transverse shear stress throughout the depth of FG porous beams. 

Overall, it is noted that the present results show excellent agreement with higher-

order theories. In addition, the magnitude of the tensile stresses given in Figure 3a  

is greater than the magnitude of the compressive stresses in FG porous beams.  
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Fig. 2. Variation of the non-dimensional central deflection w versus l/h of perfect and imperfect 

beams (k = 2): a) sinusoidally distributed loads, b) uniform distributed loads 

      
Fig. 3. The variation of stress through-the-thickness of perfect and imperfect beams l/h =10  

(k = 2) under uniform distributed loads: a) axial stress �xx, b) transverse stress �xz 

Figure 4 shows the variation of the non-dimensional critical buckling load of both 

boundary conditions supported (SS) and clamped (CC) FG porous beams concern- 

ing L/h ratios. The critical buckling load Ncr is almost constant after L/h = 20 for all  

porous models.  
 

      
Fig. 4. The variation of buckling loads versus the side-to-thickness ratio l/h of perfect and  

imperfect beams (k = 2, Ω = 0.2): a) SS boundary condition, b) CC boundary condition 

0 10 20 30 40 50

5

6

7

8

9

10

11

(a)  =0.2, k=2

w

l/h

 perfect

 Imperfect I

 Imperfect II

 Imperfect III

 Imperfect IV

0 10 20 30 40 50

7

8

9

10

11

12

13

14

(b)  =0.2, k=2

w

l/h

 perfect

 Imperfect I

 Imperfect II

 Imperfect III

 Imperfect IV

-0,5

-0,4

-0,3

-0,2

-0,1

0,0

0,1

0,2

0,3

0,4

0,5

-4 -2 0 2 4 6 8 10 12 14

(a)
 =0.2, k=2

xx

z

 perfect

 Imperfect I

 Imperfect II

 Imperfect III

 Imperfect IV

-0,5

-0,4

-0,3

-0,2

-0,1

0,0

0,1

0,2

0,3

0,4

0,5

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

(b)  =0.2, k=2

xz

z

 perfect

 Imperfect I

 Imperfect II

 Imperfect III

 Imperfect IV

0 5 10 15 20 25 30 35 40 45 50 55

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

(b)

 =0.2, k=2

BC: SS

N
cr

l/h

 perfect

 Imperfect I

 Imperfect II

 Imperfect III

 Imperfect IV

0 5 10 15 20 25 30 35 40 45 50 55

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

(b)

 =0.2, k=2

BC: CC

N
cr

l/h

 perfect

 Imperfect I

 Imperfect II

 Imperfect III

 Imperfect IV



40 N. Himeur, A. Menasria, A. Bouhadra, M. Chitour, S. Refrafi, L. Guessoum, A. Ouchene, S. Lebouazda  

5. Conclusions 

This article presents a numerical study on the bending and buckling analysis of 

functionally graded beams using a simple integral shear deformation theory 2D and 

quasi-3D. The proposed beam has four types of porous distribution and was investi-

gated under static bending and buckling with varied boundary conditions according 

to power law P-FGM distributions. This theory reduces the number of unknowns and 

governing equations while integrating the effects of thickness stretching into integral 

term. Analytical solutions for various boundary conditions for porous and perfect 

beams can be obtained by deriving the governing equations obtained from the static 

version of the principle of virtual work. Multiple validation examples are presented, 

and the current quasi-3D theory’s numerical results accurately predict the bend- 

ing and buckling responses of different FG porous beams. The theory satisfies the  

traction-free conditions on the top and bottom surfaces of the beam without using 

the shear correction factor. Closed-form solutions for static bending and buckling  

of beams with various boundary conditions are obtained. 
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